Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Audenaert, Jeroen [VerfasserIn]   i
 Kuszlewicz, James S. [VerfasserIn]   i
 Handberg, R. [VerfasserIn]   i
 Tkachenko, A. [VerfasserIn]   i
 Armstrong, D. J. [VerfasserIn]   i
 Hon, M. [VerfasserIn]   i
 Kgoadi, R. [VerfasserIn]   i
 Lund, M. N. [VerfasserIn]   i
 Bell, K. J. [VerfasserIn]   i
 Bugnet, L. [VerfasserIn]   i
 Bowman, D. M. [VerfasserIn]   i
 Johnston, C. [VerfasserIn]   i
 García, R. A. [VerfasserIn]   i
 Stello, D. [VerfasserIn]   i
 Molnár, L. [VerfasserIn]   i
 Plachy, E. [VerfasserIn]   i
 Buzasi, D. [VerfasserIn]   i
 Aerts, C. [VerfasserIn]   i
Titel:TESS Data for Asteroseismology (T'DA) stellar variability classification pipeline
Titelzusatz:setup and application to the Kepler Q9 data
Verf.angabe:J. Audenaert, J.S. Kuszlewicz, R. Handberg, A. Tkachenko, D.J. Armstrong, M. Hon, R. Kgoadi, M.N. Lund, K.J. Bell, L. Bugnet, D.M. Bowman, C. Johnston, R.A. García, D. Stello, L. Molnár, E. Plachy, D. Buzasi, and C. Aerts
E-Jahr:2021
Jahr:2021 October 21
Umfang:25 S.
Fussnoten:Gesehen am 29.01.2022
Titel Quelle:Enthalten in: The astronomical journal
Ort Quelle:London : Institute of Physics Publ., 1998
Jahr Quelle:2021
Band/Heft Quelle:162(2021), 5, Artikel-ID 209, Seite 1-25
ISSN Quelle:1538-3881
Abstract:The NASA Transiting Exoplanet Survey Satellite (TESS) is observing tens of millions of stars with time spans ranging from ∼27 days to about 1 yr of continuous observations. This vast amount of data contains a wealth of information for variability, exoplanet, and stellar astrophysics studies but requires a number of processing steps before it can be fully utilized. In order to efficiently process all the TESS data and make it available to the wider scientific community, the TESS Data for Asteroseismology working group, as part of the TESS Asteroseismic Science Consortium, has created an automated open-source processing pipeline to produce light curves corrected for systematics from the short- and long-cadence raw photometry data and to classify these according to stellar variability type. We will process all stars down to a TESS magnitude of 15. This paper is the next in a series detailing how the pipeline works. Here, we present our methodology for the automatic variability classification of TESS photometry using an ensemble of supervised learners that are combined into a metaclassifier. We successfully validate our method using a carefully constructed labeled sample of Kepler Q9 light curves with a 27.4 days time span mimicking single-sector TESS observations, on which we obtain an overall accuracy of 94.9%. We demonstrate that our methodology can successfully classify stars outside of our labeled sample by applying it to all ∼167,000 stars observed in Q9 of the Kepler space mission.
DOI:doi:10.3847/1538-3881/ac166a
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3847/1538-3881/ac166a
 DOI: https://doi.org/10.3847/1538-3881/ac166a
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1787761231
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68872109   QR-Code
zum Seitenanfang