| Online-Ressource |
Verfasst von: | Weis, Cleo-Aron Thias [VerfasserIn]  |
| Bindzus, Jan Niklas [VerfasserIn]  |
| Voigt, Jonas [VerfasserIn]  |
| Runz, Marlen [VerfasserIn]  |
| Hetjens, Svetlana [VerfasserIn]  |
| Gaida, Matthias [VerfasserIn]  |
| Popovic, Zoran V. [VerfasserIn]  |
| Porubský, Štefan [VerfasserIn]  |
Titel: | Assessment of glomerular morphological patterns by deep learning algorithms |
Verf.angabe: | Cleo-Aron Weis, Jan Niklas Bindzus, Jonas Voigt, Marlen Runz, Svetlana Hertjens, Matthias M. Gaida, Zoran V. Popovic, Stefan Porubsky |
E-Jahr: | 2022 |
Jahr: | 04 January 2022 |
Umfang: | 11 S. |
Fussnoten: | Gesehen am 07.02.2022 |
Titel Quelle: | Enthalten in: Journal of nephrology |
Ort Quelle: | Milano : Springer, 1996 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 35(2022), 2, Seite 417-427 |
ISSN Quelle: | 1724-6059 |
Abstract: | Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in nephropathology. |
DOI: | doi:10.1007/s40620-021-01221-9 |
URL: | kostenfrei: Volltext: https://doi.org/10.1007/s40620-021-01221-9 |
| DOI: https://doi.org/10.1007/s40620-021-01221-9 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Bibliogr. Hinweis: | Forschungsdaten: Weis, Cleo-Aron Thias, 1985 - : Assessment of glomerular morphological patterns by deep learning algorithms [research data] |
K10plus-PPN: | 1788659260 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Assessment of glomerular morphological patterns by deep learning algorithms / Weis, Cleo-Aron Thias [VerfasserIn]; 04 January 2022 (Online-Ressource)