Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Stahlschmidt, Stephan [VerfasserIn]  |
| Tausendteufel, Helmut [VerfasserIn]  |
| Härdle, Wolfgang [VerfasserIn]  |
Titel: | Bayesian networks for sex-related homicides |
Titelzusatz: | structure learning and prediction |
Verf.angabe: | Stephan Stahlschmidt, Helmut Tausendteufel, Wolfgang K. Härdle |
Jahr: | 2013 |
Umfang: | 17 S. |
Fussnoten: | Published online: 19 Mar 2013 ; Gesehen am 15.02.2022 |
Titel Quelle: | Enthalten in: Journal of applied statistics |
Ort Quelle: | Abingdon [u.a.] : Taylor & Francis, Taylor & Francis Group, 1974 |
Jahr Quelle: | 2013 |
Band/Heft Quelle: | 40(2013), 6, Seite 1155-1171 |
ISSN Quelle: | 1360-0532 |
Abstract: | Sex-related homicides tend to arouse wide media coverage and thus raise the urgency to find the responsible offender. However, due to the low frequency of such crimes, domain knowledge lacks completeness. We have therefore accumulated a large data-set and apply several structural learning algorithms to the data in order to combine their results into a single general graphic model. The graphical model broadly presents a distinction between an offender and a situation-driven crime. A situation-driven crime may be characterised by, amongst others, an offender lacking preparation and typically attacking a known victim in familiar surroundings. On the other hand, offender-driven crimes may be identified by the high level of forensic awareness demonstrated by the offender and the sophisticated measures applied to control the victim. The prediction performance of the graphical model is evaluated via a model averaging approach on the outcome variable offender's age. The combined graph undercuts the error rate of the single algorithms and an appropriate threshold results in an error rate of less than 10%, which describes a promising level for an actual implementation by the police. |
DOI: | doi:10.1080/02664763.2013.780235 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag ; Resolving-System: https://doi.org/10.1080/02664763.2013.780235 |
| Volltext: https://www.tandfonline.com/doi/full/10.1080/02664763.2013.780235?scroll=top&needAccess=true |
| DOI: https://doi.org/10.1080/02664763.2013.780235 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 62-09 |
| 62P25 |
| Bayesian networks |
| C49 |
| C81 |
| criminal event perspective |
| ensemble learning |
| K42 |
| model averaging |
| offender profiling |
K10plus-PPN: | 1789584159 |
Verknüpfungen: | → Zeitschrift |
Bayesian networks for sex-related homicides / Stahlschmidt, Stephan [VerfasserIn]; 2013 (Online-Ressource)
68878261