| Online-Ressource |
Verfasst von: | Sierotowicz, Marek [VerfasserIn]  |
| Lotti, Nicola [VerfasserIn]  |
| Nell, Laura [VerfasserIn]  |
| Missiroli, Francesco [VerfasserIn]  |
| Alicea, Ryan [VerfasserIn]  |
| Zhang, Xiaohui [VerfasserIn]  |
| Xiloyannis, Michele [VerfasserIn]  |
| Rupp, Rüdiger [VerfasserIn]  |
| Papp, Emese [VerfasserIn]  |
| Krzywinski, Jens [VerfasserIn]  |
| Castellini, Claudio [VerfasserIn]  |
| Masia, Lorenzo [VerfasserIn]  |
Titel: | EMG-driven machine learning control of a soft glove for grasping assistance and rehabilitation |
Verf.angabe: | Marek Sierotowicz, Nicola Lotti, Laura Nell, Francesco Missiroli, Ryan Alicea, Xiaohui Zhang, Michele Xiloyannis, Rüdiger Rupp, Emese Papp, Jens Krzywinski, Claudio Castellini, and Lorenzo Masia |
Jahr: | 2022 |
Umfang: | 8 S. |
Fussnoten: | Gesehen am 15.02.2022 |
Titel Quelle: | Enthalten in: IEEE Robotics and automation letters |
Ort Quelle: | New York, N.Y. : Institute of Electrical and Electronics Engineers, 2016 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 7(2022), 2, Seite 1566-1573 |
ISSN Quelle: | 2377-3766 |
Abstract: | In the field of rehabilitation robotics, transparent, precise and intuitive control of hand exoskeletons still represents a substantial challenge. In particular, the use of compliant systems often leads to a trade-off between lightness and material flexibility, and control precision. In this letter, we present a compliant, actuated glove with a control scheme to detect the user's motion intent, which is estimated by a machine learning algorithm based on muscle activity. Six healthy study participants used the glove in three assistance conditions during a force reaching task. The results suggest that active assistance from the glove can aid the user, reducing the muscular activity needed to attain a medium-high grasp force, and that closed-loop control of a compliant assistive glove can successfully he implemented by means of a machine learning algorithm. |
DOI: | doi:10.1109/LRA.2021.3140055 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1109/LRA.2021.3140055 |
| DOI: https://doi.org/10.1109/LRA.2021.3140055 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | agency |
| assistive technology |
| design |
| electromyography |
| exoskeleton |
| hand |
| machine learning algorithms |
| Soft robotics |
K10plus-PPN: | 1789620392 |
Verknüpfungen: | → Zeitschrift |
EMG-driven machine learning control of a soft glove for grasping assistance and rehabilitation / Sierotowicz, Marek [VerfasserIn]; 2022 (Online-Ressource)