Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ostaszewski, Marek [VerfasserIn]   i
 Türei, Dénes [VerfasserIn]   i
 Valdeolivas, Alberto [VerfasserIn]   i
 Dugourd, Aurélien [VerfasserIn]   i
 Sáez Rodríguez, Julio [VerfasserIn]   i
 Dopazo, Joaquin [VerfasserIn]   i
 Valencia, Alfonso [VerfasserIn]   i
 Kitano, Hiroaki [VerfasserIn]   i
 Barillot, Emmanuel [VerfasserIn]   i
 Auffray, Charles [VerfasserIn]   i
 Balling, Rudolf [VerfasserIn]   i
 Schneider, Reinhard [VerfasserIn]   i
Titel:COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
Verf.angabe:Marek Ostaszewski, Anna Niarakis, Alexander Mazein, Inna Kuperstein, Robert Phair, Aurelio Orta-Resendiz, Vidisha Singh, Sara Sadat Aghamiri, Marcio Luis Acencio, Enrico Glaab, Andreas Ruepp, Gisela Fobo, Corinna Montrone, Barbara Brauner, Goar Frishman, Luis Cristobal Monraz Gomez, Julia Somers, Matti Hoch, Shailendra Kumar Gupta, Julia Scheel, Hanna Borlinghaus, Tobias Czauderna, Falk Schreiber, Arnau Montagud, Miguel Ponce de Leon, Akira Funahashi, Yusuke Hiki, Noriko Hiroi, Takahiro G. Yamada, Andreas Draeger, Alina Renz, Muhammad Naveez, Zsolt Bocskei, Francesco Messina, Daniela Boernigen, Liam Fergusson, Marta Conti, Marius Rameil, Vanessa Nakonecnij, Jakob Vanhoefer, Leonard Schmiester, Muying Wang, Emily E. Ackerman, Jason E. Shoemaker, Jeremy Zucker, Kristie Oxford, Jeremy Teuton, Ebru Kocakaya, Gokce Yagmur Summak, Kristina Hanspers, Martina Kutmon, Susan Coort, Lars Eijssen, Friederike Ehrhart, Devasahayam Arokia Balaya Rex, Denise Slenter, Marvin Martens, Nhung Pham, Robin Haw, Bijay Jassal, Lisa Matthews, Marija Orlic-Milacic, Andrea Senff Ribeiro, Karen Rothfels, Veronica Shamovsky, Ralf Stephan, Cristoffer Sevilla, Thawfeek Varusai, Jean-Marie Ravel, Rupsha Fraser, Vera Ortseifen, Silvia Marchesi, Piotr Gawron, Ewa Smula, Laurent Heirendt, Venkata Satagopam, Guanming Wu, Anders Riutta, Martin Golebiewski, Stuart Owen, Carole Goble, Xiaoming Hu, Rupert W. Overall, Dieter Maier, Angela Bauch, Benjamin M. Gyori, John A. Bachman, Carlos Vega, Valentin Groues, Miguel Vazquez, Pablo Porras, Luana Licata, Marta Iannuccelli, Francesca Sacco, Anastasia Nesterova, Anton Yuryev, Anita de Waard, Denes Turei, Augustin Luna, Ozgun Babur, Sylvain Soliman, Alberto Valdeolivas, Marina Esteban-Medina, Maria Pena-Chilet, Kinza Rian, Tomas Helikar, Bhanwar Lal Puniya, Dezso Modos, Agatha Treveil, Marton Olbei, Bertrand De Meulder, Stephane Ballereau, Aurelien Dugourd, Aurelien Naldi, Vincent Noel, Laurence Calzone, Chris Sander, Emek Demir, Tamas Korcsmaros, Tom C. Freeman, Franck Auge, Jacques S. Beckmann, Jan Hasenauer, Olaf Wolkenhauer, Egon L. Wilighagen, Alexander R. Pico, Chris T. Evelo, Marc E. Gillespie, Lincoln D. Stein, Henning Hermjakob, Peter D'Eustachio, Julio Saez-Rodriguez, Joaquin Dopazo, Alfonso Valencia, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider and theCOVID-19 Disease Map Community
E-Jahr:2021
Jahr:OCT 2021
Umfang:22 S.
Fussnoten:Gesehen am 16.02.2022
Titel Quelle:Enthalten in: Molecular systems biology
Ort Quelle:[London] : Nature Publishing Group UK, 2005
Jahr Quelle:2021
Band/Heft Quelle:17(2021), 10, Artikel-ID e10387, Seite 1-22
ISSN Quelle:1744-4292
Abstract:We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
DOI:doi:10.15252/msb.202110387
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.15252/msb.202110387
 Volltext: https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.15252%2Fmsb.20 ...
 DOI: https://doi.org/10.15252/msb.202110387
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:beta
 computable knowledge repository
 coronavirus
 degradation
 environment
 expression
 interferon signaling pathway
 large-scale biocuration
 nf-kappa-b
 omics data analysis
 open access community effort
 sars-cov
 sars-cov-2
 spike protein
 systems biomedicine
K10plus-PPN:1789696844
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68878946   QR-Code
zum Seitenanfang