Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Erschfeld, Alaric [VerfasserIn]  |
| Flörchinger, Stefan [VerfasserIn]  |
Titel: | Cosmological functional renormalization group, extended Galilean invariance, and approximate solutions to the flow equations |
Verf.angabe: | Alaric Erschfeld and Stefan Floerchinger |
E-Jahr: | 2022 |
Jahr: | 7 January 2022 |
Umfang: | 17 S. |
Fussnoten: | Gesehen am 24.02.2022 |
Titel Quelle: | Enthalten in: Physical review |
Ort Quelle: | Woodbury, NY : Inst., 2016 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 105(2022), 2, Artikel-ID 023506, Seite 1-17 |
ISSN Quelle: | 2470-0029 |
Abstract: | The functional renormalization group is employed to study the nonlinear regime of late-time cosmic structure formation. This framework naturally allows for nonperturbative approximation schemes, usually guided by underlying symmetries or a truncation of the theory space. An extended symmetry that is related to Galilean invariance is studied and corresponding Ward identities are derived. These are used to obtain (formally) closed renormalization group flow equations for two-point correlation functions in the limit of large wave numbers (small scales). The flow equations are analytically solved in an approximation that is connected to the “sweeping effect” previously described in the context of fluid turbulence. |
DOI: | doi:10.1103/PhysRevD.105.023506 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1103/PhysRevD.105.023506 |
| Volltext: https://link.aps.org/doi/10.1103/PhysRevD.105.023506 |
| DOI: https://doi.org/10.1103/PhysRevD.105.023506 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1793868581 |
Verknüpfungen: | → Zeitschrift |
Cosmological functional renormalization group, extended Galilean invariance, and approximate solutions to the flow equations / Erschfeld, Alaric [VerfasserIn]; 7 January 2022 (Online-Ressource)
68882570