Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bauer, Tobias Hartmut [VerfasserIn]   i
 Eils, Roland [VerfasserIn]   i
 König, Rainer [VerfasserIn]   i
Titel:RIP - the regulatory interaction predictor
Titelzusatz:a machine learning-based approach for predicting target genes of transcription factors
Verf.angabe:Tobias Bauer, Roland Eils and Rainer König
E-Jahr:2011
Jahr:20 June 2011
Umfang:9 S.
Fussnoten:Gesehen am 02.03.2022
Titel Quelle:Enthalten in: Bioinformatics
Ort Quelle:Oxford : Oxford Univ. Press, 1985
Jahr Quelle:2011
Band/Heft Quelle:27(2011), 16, Seite 2239-2247
ISSN Quelle:1367-4811
Abstract:Motivation: Understanding transcriptional gene regulation is essential for studying cellular systems. Identifying genome-wide targets of transcription factors (TFs) provides the basis to discover the involvement of TFs and TF cooperativeness in cellular systems and pathogenesis.Results: We present the regulatory interaction predictor (RIP), a machine learning approach that inferred 73 923 regulatory interactions (RIs) for 301 human TFs and 11 263 target genes with considerably good quality and 4516 RIs with very high quality. The inference of RIs is independent of any specific condition. Our approach employs support vector machines (SVMs) trained on a set of experimentally proven RIs from a public repository (TRANSFAC). Features of RIs for the learning process are based on a correlation meta-analysis of 4064 gene expression profiles from 76 studies, in silico predictions of transcription factor binding sites (TFBSs) and combinations of these employing knowledge about co-regulation of genes by a common TF (TF-module). The trained SVMs were applied to infer new RIs for a large set of TFs and genes. In a case study, we employed the inferred RIs to analyze an independent microarray dataset. We identified key TFs regulating the transcriptional response upon interferon alpha stimulation of monocytes, most prominently interferon-stimulated gene factor 3 (ISGF3). Furthermore, predicted TF-modules were highly associated to their functionally related pathways.Conclusion: Descriptors of gene expression, TFBS predictions, experimentally verified binding information and statistical combination of this enabled inferring RIs on a genome-wide scale for human genes with considerably good precision serving as a good basis for expression profiling studies.Contact:r.koenig@dkfz.deSupplementary information:Supplementary data are available at Bioinformatics online.
DOI:doi:10.1093/bioinformatics/btr366
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/bioinformatics/btr366
 DOI: https://doi.org/10.1093/bioinformatics/btr366
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1794404104
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68884467   QR-Code
zum Seitenanfang