Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Radev, Stefan [VerfasserIn]   i
 Graw, Frederik [VerfasserIn]   i
 Chen, Simiao [VerfasserIn]   i
 Mutters, Nico T. [VerfasserIn]   i
 Eichel, Vanessa [VerfasserIn]   i
 Bärnighausen, Till [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
Titel:OutbreakFlow
Titelzusatz:model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany
Verf.angabe:Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe
E-Jahr:2021
Jahr:October 25, 2021
Umfang:26 S.
Fussnoten:Gesehen am 09.03.2022
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2021
Band/Heft Quelle:17(2021), 10, Artikel-ID e1009472, Seite 1-26
ISSN Quelle:1553-7358
Abstract:Mathematical models in epidemiology are an indispensable tool to determine the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and interventional measures during an ongoing outbreak. However, reliably inferring the epidemical dynamics by connecting complex models to real data is still hard and requires either laborious manual parameter fitting or expensive optimization methods which have to be repeated from scratch for every application of a given model. In this work, we address this problem with a novel combination of epidemiological modeling with specialized neural networks. Our approach entails two computational phases: In an initial training phase, a mathematical model describing the epidemic is used as a coach for a neural network, which acquires global knowledge about the full range of possible disease dynamics. In the subsequent inference phase, the trained neural network processes the observed data of an actual outbreak and infers the parameters of the model in order to realistically reproduce the observed dynamics and reliably predict future progression. With its flexible framework, our simulation-based approach is applicable to a variety of epidemiological models. Moreover, since our method is fully Bayesian, it is designed to incorporate all available prior knowledge about plausible parameter values and returns complete joint posterior distributions over these parameters. Application of our method to the early Covid-19 outbreak phase in Germany demonstrates that we are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
DOI:doi:10.1371/journal.pcbi.1009472
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext ; Verlag: https://doi.org/10.1371/journal.pcbi.1009472
 kostenfrei: Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009472
 DOI: https://doi.org/10.1371/journal.pcbi.1009472
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:COVID 19
 Disease dynamics
 Epidemiology
 Germany
 Machine learning
 Network analysis
 Neural networks
 Pandemics
K10plus-PPN:1795100427
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68893156   QR-Code
zum Seitenanfang