Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Sharan, Lalith [VerfasserIn]   i
 Romano, Gabriele [VerfasserIn]   i
 Köhler, Sven [VerfasserIn]   i
 Kelm, Halvar [VerfasserIn]   i
 Karck, Matthias [VerfasserIn]   i
 De Simone, Raffaele [VerfasserIn]   i
 Engelhardt, Sandy [VerfasserIn]   i
Titel:Mutually improved endoscopic image synthesis and landmark detection in unpaired image-to-image translation
Verf.angabe:Lalith Sharan, Gabriele Romano, Sven Koehler, Halvar Kelm, Matthias Karck, Raffaele De Simone and Sandy Engelhardt
E-Jahr:2022
Jahr:January 2022
Umfang:11 S.
Fussnoten:Gesehen am 07.04.2022
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE journal of biomedical and health informatics
Ort Quelle:New York, NY : IEEE, 2013
Jahr Quelle:2022
Band/Heft Quelle:26(2022), 1, Seite 127-138
ISSN Quelle:2168-2208
Abstract:The CycleGAN framework allows for unsupervised image-to-image translation of unpaired data. In a scenario of surgical training on a physical surgical simulator, this method can be used to transform endoscopic images of phantoms into images which more closely resemble the intra-operative appearance of the same surgical target structure. This can be viewed as a novel augmented reality approach, which we coined Hyperrealism in previous work. In this use case, it is of paramount importance to display objects like needles, sutures or instruments consistent in both domains while altering the style to a more tissue-like appearance. Segmentation of these objects would allow for a direct transfer, however, contouring of these, partly tiny and thin foreground objects is cumbersome and perhaps inaccurate. Instead, we propose to use landmark detection on the points when sutures pass into the tissue. This objective is directly incorporated into a CycleGAN framework by treating the performance of pre-trained detector models as an additional optimization goal. We show that a task defined on these sparse landmark labels improves consistency of synthesis by the generator network in both domains. Comparing a baseline CycleGAN architecture to our proposed extension (DetCycleGAN), mean precision (PPV) improved by $+61.32$, mean sensitivity (TPR) by $+37.91$, and mean $F_1$ score by $+0.4743$. Furthermore, it could be shown that by dataset fusion, generated intra-operative images can be leveraged as additional training data for the detection network itself.
DOI:doi:10.1109/JBHI.2021.3099858
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

DOI: https://doi.org/10.1109/JBHI.2021.3099858
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:CycleGAN
 Generative adversarial networks
 landmark detection
 landmark localization
 Maintenance engineering
 mitral valve repair
 Semantics
 Surgery
 surgical simulation
 surgical training
 Task analysis
 Training
 Valves
K10plus-PPN:1798141248
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68905057   QR-Code
zum Seitenanfang