Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kang, Da Eun [VerfasserIn]   i
 Pellegrini, Eric William [VerfasserIn]   i
 Ardizzone, Lynton [VerfasserIn]   i
 Klessen, Ralf S. [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
 Glover, Simon [VerfasserIn]   i
 Ksoll, Victor F. [VerfasserIn]   i
Titel:Emission-line diagnostics of H ii regions using conditional invertible neural networks
Verf.angabe:Da Eun Kang, Eric W. Pellegrini, Lynton Ardizzone, Ralf S. Klessen, Ullrich Koethe, Simon C.O. Glover, Victor F. Ksoll
E-Jahr:2022
Jahr:2022 January 29
Umfang:31 S.
Fussnoten:Gesehen am 12.04.2022
Titel Quelle:Enthalten in: Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society
Ort Quelle:Oxford : Oxford Univ. Press, 1827
Jahr Quelle:2022
Band/Heft Quelle:512(2022), 1, Seite 617-647
ISSN Quelle:1365-2966
Abstract:Young massive stars play an important role in the evolution of the interstellar medium (ISM) and the self-regulation of star formation in giant molecular clouds (GMCs) by injecting energy, momentum, and radiation (stellar feedback) into surrounding environments, disrupting the parental clouds, and regulating further star formation. Information of the stellar feedback inheres in the emission we observe, however inferring the physical properties from photometric and spectroscopic measurements is difficult, because stellar feedback is a highly complex and non-linear process, so that the observational data are highly degenerate. On this account, we introduce a novel method that couples a conditional invertible neural network (cINN) with the WARPFIELD-emission predictor (WARPFIELD-EMP) to estimate the physical properties of star-forming regions from spectral observations. We present a cINN that predicts the posterior distribution of seven physical parameters (cloud mass, star formation efficiency, cloud density, cloud age which means age of the first generation stars, age of the youngest cluster, the number of clusters, and the evolutionary phase of the cloud) from the luminosity of 12 optical emission lines, and test our network with synthetic models that are not used during training. Our network is a powerful and time-efficient tool that can accurately predict each parameter, although degeneracy sometimes remains in the posterior estimates of the number of clusters. We validate the posteriors estimated by the network and confirm that they are consistent with the input observations. We also evaluate the influence of observational uncertainties on the network performance.
DOI:doi:10.1093/mnras/stac222
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/mnras/stac222
 DOI: https://doi.org/10.1093/mnras/stac222
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1799292851
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68906795   QR-Code
zum Seitenanfang