Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Geiß, Christian [VerfasserIn]   i
 Brzoska, Elisabeth [VerfasserIn]   i
 Aravena Pelizari, Patrick [VerfasserIn]   i
 Lautenbach, Sven [VerfasserIn]   i
 Taubenböck, Hannes [VerfasserIn]   i
Titel:Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing
Verf.angabe:Christian Geiß, Elisabeth Brzoska, Patrick Aravena Pelizari, Sven Lautenbach, Hannes Taubenböck
Jahr:2022
Umfang:10 S.
Fussnoten:Available online 27 December 2021 ; Gesehen am 12.04.2022
Titel Quelle:Enthalten in: International journal of applied earth observation and geoinformation
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1999
Jahr Quelle:2022
Band/Heft Quelle:106(2022), Artikel-ID 102657, Seite 1-10
ISSN Quelle:1872-826X
Abstract:Multi-task learning techniques allow the beneficial joint estimation of multiple target variables. Here, we propose a novel multi-task regression (MTR) method called ensemble of regressor chains with repetitive permutation scheme. It belongs to the family of problem transformation-based MTR methods which foresee the creation of an individual model per target variable. Subsequently, the combination of the separate models allows obtaining an overall prediction. Our method builds upon the concept of so-called ensemble of regressor chains which align single-target models along a flexible permutation, i.e., chain. However, in order to particularly address situations with a small number of target variables, we equip ensemble of regressor chains with a repetitive permutation scheme. Thereby, estimates of the target variables are cascaded to subsequent models as additional features when learning along a chain, whereby one target variable can occupy multiple elements of the chain. We provide experimental evaluation of the method by jointly estimating built-up height and built-up density based on features derived from Sentinel-2 data for the four largest cities in Germany in a comparative setup. We also consider single-target stacking, multi-target stacking, and ensemble of regressor chains without repetitive permutation. Empirical results underline the beneficial performance properties of MTR methods. Our ensemble of regressor chain with repetitive permutation scheme approach achieved most frequently the highest accuracies compared to the other MTR methods, whereby mean improvements across the experiments of 14.5% compared to initial single-target models could be achieved.
DOI:doi:10.1016/j.jag.2021.102657
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.jag.2021.102657
 Volltext: https://www.sciencedirect.com/science/article/pii/S0303243421003640
 DOI: https://doi.org/10.1016/j.jag.2021.102657
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Built-up density
 Built-up height
 Multi-target regression
 Multi-target stacking
 Regressor chains
 Single-target stacking
K10plus-PPN:1799354423
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68906978   QR-Code
zum Seitenanfang