Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dullemond, Cornelis [VerfasserIn]   i
 Kimmig, Carolin [VerfasserIn]   i
 Zanazzi, John J. [VerfasserIn]   i
Titel:On the equations of warped disc dynamics
Verf.angabe:C.P. Dullemond, C.N. Kimmig and J.J. Zanazzi
Jahr:2022
Umfang:23 S.
Fussnoten:Advance access publication 2021 October 2 ; Gesehen am 21.04.2021
Titel Quelle:Enthalten in: Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society
Ort Quelle:Oxford : Oxford Univ. Press, 1827
Jahr Quelle:2022
Band/Heft Quelle:511(2022), 2, Seite 2925-2947
ISSN Quelle:1365-2966
Abstract:The 1D evolution equations for warped discs come in two flavours: For very viscous discs, the internal torque vector $\boldsymbol {G}$ is uniquely determined by the local conditions in the disc, and warps tend to damp out rapidly if they are not continuously driven. For very inviscid discs, on the other hand, $\boldsymbol {G}$ becomes a dynamic quantity, and a warp will propagate through the disc as a wave. The equations governing both regimes are usually treated separately. A unified set of equations was postulated recently by Martin et al., but not yet derived from the underlying physics. The standard method for deriving these equations is based on a perturbation series expansion, which is a powerful, but somewhat abstract technique. A more straightforward method is to employ the warped shearing box framework of Ogilvie & Latter, which so far has not yet been used to derive the equations for the wave-like regime. The goal of this paper is to analyse the warped disc equations in both regimes using the warped shearing box framework, to derive a unified set of equations, valid for small warps, and to discuss how our results can be interpreted in terms of the affine tilted-slab approach of Ogilvie.
DOI:doi:10.1093/mnras/stab2791
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/mnras/stab2791
 DOI: https://doi.org/10.1093/mnras/stab2791
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1799496236
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68907369   QR-Code
zum Seitenanfang