Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Radev, Stefan [VerfasserIn]   i
 Mertens, Ulf K. [VerfasserIn]   i
 Voß, Andreas [VerfasserIn]   i
 Ardizzone, Lynton [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
Titel:BayesFlow
Titelzusatz:learning complex stochastic models with invertible neural networks
Verf.angabe:Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe, Member, IEEE
Jahr:2022
Umfang:15 S.
Fussnoten:Date of publication: 18 December 2020 ; Gesehen am 31.05.2022
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on neural networks and learning systems
Ort Quelle:[New York, NY] : IEEE, 2012
Jahr Quelle:2022
Band/Heft Quelle:33(2022), 4, Seite 1452-1466
ISSN Quelle:2162-2388
Abstract:Estimating the parameters of mathematical models is a common problem in almost all branches of science. However, this problem can prove notably difficult when processes and model descriptions become increasingly complex and an explicit likelihood function is not available. With this work, we propose a novel method for globally amortized Bayesian inference based on invertible neural networks that we call BayesFlow. The method uses simulations to learn a global estimator for the probabilistic mapping from observed data to underlying model parameters. A neural network pretrained in this way can then, without additional training or optimization, infer full posteriors on arbitrarily many real data sets involving the same model family. In addition, our method incorporates a summary network trained to embed the observed data into maximally informative summary statistics. Learning summary statistics from data makes the method applicable to modeling scenarios where standard inference techniques with handcrafted summary statistics fail. We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science, and ecology. We argue that BayesFlow provides a general framework for building amortized Bayesian parameter estimation machines for any forward model from which data can be simulated.
DOI:doi:10.1109/TNNLS.2020.3042395
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TNNLS.2020.3042395
 DOI: https://doi.org/10.1109/TNNLS.2020.3042395
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Bayes methods
 Bayesian inference
 Biological system modeling
 computational and artificial intelligence
 Data models
 Estimation
 machine learning
 neural networks
 Neural networks
 Numerical models
 statistical learning
 Training
K10plus-PPN:1801173818
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68916149   QR-Code
zum Seitenanfang