Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Straub, Sina [VerfasserIn]   i
 Stiegeler, Janis [VerfasserIn]   i
 El-Sanosy, Edris [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Ladd, Mark E. [VerfasserIn]   i
 Schneider, Till M. [VerfasserIn]   i
Titel:A novel gradient echo data based vein segmentation algorithm and its application for the detection of regional cerebral differences in venous susceptibility
Verf.angabe:Sina Straub, Janis Stiegeler, Edris El-Sanosy, Martin Bendszus, Mark E. Ladd, Till M. Schneider
E-Jahr:2022
Jahr:24 January 2022
Umfang:11 S.
Fussnoten:Gesehen am 11.05.2022
Titel Quelle:Enthalten in: NeuroImage
Ort Quelle:Orlando, Fla. : Academic Press, 1992
Jahr Quelle:2022
Band/Heft Quelle:250(2022), Artikel-ID 118931, Seite 1-11
ISSN Quelle:1095-9572
Abstract:Accurate segmentation of cerebral venous vasculature from gradient echo data is of central importance in several areas of neuroimaging such as for the susceptibility-based assessment of brain oxygenation or planning of electrode placement in deep brain stimulation. In this study, a vein segmentation algorithm for single- and multi-echo gradient echo data is proposed. First, susceptibility maps, true susceptibility-weighted images, and, in the multi-echo case, R2* maps were generated from the gradient echo data. These maps were filtered with an inverted Hamming filter to suppress background contrast as well as artifacts from field inhomogeneities at the brain boundaries. A shearlet-based scale-wise representation was generated to calculate a vesselness function and to generate segmentations based on local thresholding. The accuracy of the proposed algorithm was evaluated for different echo times and image resolutions using a manually generated reference segmentation and two vein segmentation algorithms (Frangi vesselness-based, recursive vesselness filter) as a reference with the Dice and Cohen's coefficients as well as the modified Hausdorff distance. The Frangi-based and recursive vesselness filter methods were significantly outperformed with regard to all error metrics. Applying the algorithm, susceptibility differences likely related to differences in blood oxygenation between superficial and deep venous territories could be demonstrated.
DOI:doi:10.1016/j.neuroimage.2022.118931
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.neuroimage.2022.118931
 Volltext: https://www.sciencedirect.com/science/article/pii/S105381192200060X
 DOI: https://doi.org/10.1016/j.neuroimage.2022.118931
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Arteries
 Brain vessels
 Magnetic resonance imaging
 Quantitative susceptibility mapping
 Segmentation
 Veins
K10plus-PPN:1801394210
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68917289   QR-Code
zum Seitenanfang