Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tiesmeyer, Sebastian [VerfasserIn]   i
 Sahay, Shashwat [VerfasserIn]   i
 Müller-Bötticher, Niklas [VerfasserIn]   i
 Eils, Roland [VerfasserIn]   i
 Mackowiak, Sebastian D. [VerfasserIn]   i
 Ishaque, Naveed [VerfasserIn]   i
Titel:SSAM-lite: a light-weight web app for rapid analysis of spatially resolved transcriptomics data
Verf.angabe:Sebastian Tiesmeyer, Shashwat Sahay, Niklas Müller-Bötticher, Roland Eils, Sebastian D. Mackowiak and Naveed Ishaque
E-Jahr:2022
Jahr:28 February 2022
Umfang:7 S.
Fussnoten:Gesehen am 12.05.2022
Titel Quelle:Enthalten in: Frontiers in genetics
Ort Quelle:Lausanne : Frontiers Media, 2010
Jahr Quelle:2022
Band/Heft Quelle:13(2022) vom: Feb., Artikel-ID 785877, Seite 1-7
ISSN Quelle:1664-8021
Abstract:The combination of a cell’s transcriptional profile and location defines its function in a spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in situ. SRT methods can resolve gene expression up to single-molecule resolution. A particular computational problem with single-molecule SRT methods is the correct aggregation of mRNA molecules into cells. Traditionally, aggregating mRNA molecules into cell-based features begins with the identification of cells via segmentation of the nucleus or the cell membrane. However, recently a number of cell-segmentation-free approaches have emerged. While these methods have been demonstrated to be more performant than segmentation-based approaches, they are still not easily accessible since they require specialized knowledge of programming languages and access to large computational resources. Here we present SSAM-lite, a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require computational experts or specialized hardware. Analysis of a tissue slice of the mouse somatosensory cortex took less than a minute on a laptop with modest hardware. Parameters can interactively be optimized on small portions of the data before the entire tissue image is analyzed. A server version of SSAM-lite can be run completely offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to use, thus enabling a broad audience to investigate and analyze single-molecule SRT data.
DOI:doi:10.3389/fgene.2022.785877
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3389/fgene.2022.785877
 Volltext: https://www.frontiersin.org/article/10.3389/fgene.2022.785877
 DOI: https://doi.org/10.3389/fgene.2022.785877
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1801688656
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68917851   QR-Code
zum Seitenanfang