| Online-Ressource |
Verfasst von: | Tiesmeyer, Sebastian [VerfasserIn]  |
| Sahay, Shashwat [VerfasserIn]  |
| Müller-Bötticher, Niklas [VerfasserIn]  |
| Eils, Roland [VerfasserIn]  |
| Mackowiak, Sebastian D. [VerfasserIn]  |
| Ishaque, Naveed [VerfasserIn]  |
Titel: | SSAM-lite: a light-weight web app for rapid analysis of spatially resolved transcriptomics data |
Verf.angabe: | Sebastian Tiesmeyer, Shashwat Sahay, Niklas Müller-Bötticher, Roland Eils, Sebastian D. Mackowiak and Naveed Ishaque |
E-Jahr: | 2022 |
Jahr: | 28 February 2022 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 12.05.2022 |
Titel Quelle: | Enthalten in: Frontiers in genetics |
Ort Quelle: | Lausanne : Frontiers Media, 2010 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 13(2022) vom: Feb., Artikel-ID 785877, Seite 1-7 |
ISSN Quelle: | 1664-8021 |
Abstract: | The combination of a cell’s transcriptional profile and location defines its function in a spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in situ. SRT methods can resolve gene expression up to single-molecule resolution. A particular computational problem with single-molecule SRT methods is the correct aggregation of mRNA molecules into cells. Traditionally, aggregating mRNA molecules into cell-based features begins with the identification of cells via segmentation of the nucleus or the cell membrane. However, recently a number of cell-segmentation-free approaches have emerged. While these methods have been demonstrated to be more performant than segmentation-based approaches, they are still not easily accessible since they require specialized knowledge of programming languages and access to large computational resources. Here we present SSAM-lite, a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require computational experts or specialized hardware. Analysis of a tissue slice of the mouse somatosensory cortex took less than a minute on a laptop with modest hardware. Parameters can interactively be optimized on small portions of the data before the entire tissue image is analyzed. A server version of SSAM-lite can be run completely offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to use, thus enabling a broad audience to investigate and analyze single-molecule SRT data. |
DOI: | doi:10.3389/fgene.2022.785877 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.3389/fgene.2022.785877 |
| Volltext: https://www.frontiersin.org/article/10.3389/fgene.2022.785877 |
| DOI: https://doi.org/10.3389/fgene.2022.785877 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1801688656 |
Verknüpfungen: | → Zeitschrift |
SSAM-lite: a light-weight web app for rapid analysis of spatially resolved transcriptomics data / Tiesmeyer, Sebastian [VerfasserIn]; 28 February 2022 (Online-Ressource)