Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Weis, Cleo-Aron Thias [VerfasserIn]   i
 Weihrauch, Kian R. [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
 Kriegsmann, Mark [VerfasserIn]   i
Titel:Unsupervised segmentation in NSCLC
Titelzusatz:how to map the output of unsupervised segmentation to meaningful histological labels by linear combination?
Verf.angabe:Cleo-Aron Weis, Kian R. Weihrauch, Katharina Kriegsmann and Mark Kriegsmann
E-Jahr:2022
Jahr:7 April 2022
Umfang:18 S.
Fussnoten:This article belongs to the Special issue "Artificial Intelligence Applied to Medical Imaging and Computational Biology" ; Gesehen am 30.05.2022
Titel Quelle:Enthalten in: Applied Sciences
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2022
Band/Heft Quelle:12(2022), 8, Special issue, Artikel-ID 3718, Seite 1-18
ISSN Quelle:2076-3417
Abstract:Background: Segmentation is, in many Pathomics projects, an initial step. Usually, in supervised settings, well-annotated and large datasets are required. Regarding the rarity of such datasets, unsupervised learning concepts appear to be a potential solution. Against this background, we tested for a small dataset on lung cancer tissue microarrays (TMA) if a model (i) first can be in a previously published unsupervised setting and (ii) secondly can be modified and retrained to produce meaningful labels, and (iii) we finally compared this approach to standard segmentation models. Methods: (ad i) First, a convolutional neuronal network (CNN) segmentation model is trained in an unsupervised fashion, as recently described by Kanezaki et al. (ad ii) Second, the model is modified by adding a remapping block and is retrained on an annotated dataset in a supervised setting. (ad iii) Third, the segmentation results are compared to standard segmentation models trained on the same dataset. Results: (ad i-ii) By adding an additional mapping-block layer and by retraining, models previously trained in an unsupervised manner can produce meaningful labels. (ad iii) The segmentation quality is inferior to standard segmentation models trained on the same dataset. Conclusions: Unsupervised training in combination with subsequent supervised training offers for histological images here no benefit.
DOI:doi:10.3390/app12083718
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/app12083718
 Volltext: https://www.mdpi.com/2076-3417/12/8/3718
 DOI: https://doi.org/10.3390/app12083718
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:histopathology
 lung cancer
 supervised segmentation
 unsupervised segmentation
K10plus-PPN:1805154044
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68923590   QR-Code
zum Seitenanfang