Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pawlowski, Jan M. [VerfasserIn]   i
 Urban, Julian M. [VerfasserIn]   i
Titel:Flow-based density of states for complex actions
Verf.angabe:Jan M. Pawlowski and Julian M. Urban
E-Jahr:2022
Jahr:2 Mar 2022
Umfang:8 S.
Fussnoten:Gesehen am 28.09.2022
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2022
Band/Heft Quelle:(2022), Artikel-ID 2203.01243, Seite 1-8
Abstract:Emerging sampling algorithms based on normalizing flows have the potential to solve ergodicity problems in lattice calculations. Furthermore, it has been noted that flows can be used to compute thermodynamic quantities which are difficult to access with traditional methods. This suggests that they are also applicable to the density-of-states approach to complex action problems. In particular, flow-based sampling may be used to compute the density directly, in contradistinction to the conventional strategy of reconstructing it via measuring and integrating the derivative of its logarithm. By circumventing this procedure, the accumulation of errors from the numerical integration is avoided completely and the overall normalization factor can be determined explicitly. In this proof-of-principle study, we demonstrate our method in the context of two-component scalar field theory where the $O(2)$ symmetry is explicitly broken by an imaginary external field. First, we concentrate on the zero-dimensional case which can be solved exactly. We show that with our method, the Lee-Yang zeroes of the associated partition function can be successfully located. Subsequently, we confirm that the flow-based approach correctly reproduces the density computed with conventional methods in one- and two-dimensional models.
DOI:doi:10.48550/arXiv.2203.01243
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://arxiv.org/abs/2203.01243
 DOI: https://doi.org/10.48550/arXiv.2203.01243
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer Science - Machine Learning
 Condensed Matter - Statistical Mechanics
 High Energy Physics - Lattice
K10plus-PPN:1805506943
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68924874   QR-Code
zum Seitenanfang