Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jäger, Julia [VerfasserIn]   i
 Patra, Pintu [VerfasserIn]   i
 Sanchez, Cecilia P. [VerfasserIn]   i
 Lanzer, Michael [VerfasserIn]   i
 Schwarz, Ulrich S. [VerfasserIn]   i
Titel:A particle-based computational model to analyse remodelling of the red blood cell cytoskeleton during malaria infections
Verf.angabe:Julia Jäger, Pintu Patra, Cecilia P. Sanchez, Michael Lanzer, Ulrich S. Schwarz
E-Jahr:2022
Jahr:April 8, 2022
Umfang:27 S.
Fussnoten:Gesehen am 10.06.2022
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2022
Band/Heft Quelle:18(2022), 4, Artikel-ID e1009509, Seite 1-27
ISSN Quelle:1553-7358
Abstract:Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments.
DOI:doi:10.1371/journal.pcbi.1009509
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pcbi.1009509
 Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009509
 DOI: https://doi.org/10.1371/journal.pcbi.1009509
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Actin filaments
 Actins
 Ankyrins
 Biochemical simulations
 Cytoskeleton
 Dynamic actin filaments
 Malarial parasites
 Spectrins
K10plus-PPN:1806741326
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68929314   QR-Code
zum Seitenanfang