Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Laves, Max-Heinrich [VerfasserIn]   i
 Tölle, Malte [VerfasserIn]   i
 Schlaefer, Alexander [VerfasserIn]   i
 Engelhardt, Sandy [VerfasserIn]   i
Titel:Posterior temperature optimized Bayesian models for inverse problems in medical imaging
Verf.angabe:Max-Heinrich Laves, Malte Tölle, Alexander Schlaefer, Sandy Engelhardt
E-Jahr:2022
Jahr:May 2022
Umfang:12 S.
Fussnoten:Available online 11 February 2022 ; Gesehen am 13.06.2022
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2022
Band/Heft Quelle:78(2022), Artikel-ID 102382, Seite 1-12
ISSN Quelle:1361-8423
Abstract:We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising. A suitable prior distribution introduces regularization, which is needed to solve the ill-posed problem and reduces overfitting the data. In practice, however, this often results in a suboptimal posterior temperature, and the full potential of the Bayesian approach is not being exploited. In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression. Our method is extensively evaluated on four different inverse tasks on a variety of modalities with images from public data sets and we demonstrate that an optimized posterior temperature outperforms both non-Bayesian and Bayesian approaches without temperature optimization. The use of an optimized prior distribution and posterior temperature leads to improved accuracy and uncertainty estimation and we show that it is sufficient to find these hyperparameters per task domain. Well-tempered posteriors yield calibrated uncertainty, which increases the reliability in the predictions. Our source code is publicly available at github.com/Cardio-AI/mfvi-dip-mia.
DOI:doi:10.1016/j.media.2022.102382
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.media.2022.102382
 Volltext: https://www.sciencedirect.com/science/article/pii/S1361841522000342
 DOI: https://doi.org/10.1016/j.media.2022.102382
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Deep learning
 Hallucination
 Variational inference
K10plus-PPN:1806875764
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68930248   QR-Code
zum Seitenanfang