Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bhardwaj, Megha [VerfasserIn]   i
 Schöttker, Ben [VerfasserIn]   i
 Holleczek, Bernd [VerfasserIn]   i
 Benner, Axel [VerfasserIn]   i
 Schrotz-King, Petra [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
Titel:Potential of inflammatory protein signatures for enhanced selection of people for lung cancer screening
Verf.angabe:Megha Bhardwaj, Ben Schöttker, Bernd Holleczek, Axel Benner, Petra Schrotz-King and Hermann Brenner
E-Jahr:2022
Jahr:26 April 2022
Umfang:1-12$t12
Fussnoten:This article belongs to the Section Cancer Epidemiology and Prevention ; Gesehen am 23.06.2022
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2022
Band/Heft Quelle:14(2022), 9, Artikel-ID 2146
ISSN Quelle:2072-6694
Abstract:Randomized trials have demonstrated a substantial reduction in lung cancer (LC) mortality by screening heavy smokers with low-dose computed tomography (LDCT). The aim of this study was to assess if and to what extent blood-based inflammatory protein biomarkers might enhance selection of those at highest risk for LC screening. Ever smoking participants were chosen from 9940 participants, aged 50-75 years, who were followed up with respect to LC incidence for 17 years in a prospective population-based cohort study conducted in Saarland, Germany. Using proximity extension assay, 92 inflammation protein biomarkers were measured in baseline plasma samples of ever smoking participants, including 172 incident LC cases and 285 randomly selected participants free of LC. Smoothly clipped absolute deviation (SCAD) penalized regression with 0.632+ bootstrap for correction of overoptimism was applied to derive an inflammation protein biomarker score (INS) and a combined INS-pack-years score in a training set, and algorithms were further evaluated in an independent validation set. Furthermore, the performances of nine LC risk prediction models individually and in combination with inflammatory plasma protein biomarkers for predicting LC incidence were comparatively evaluated. The combined INS-pack-years score predicted LC incidence with area under the curves (AUCs) of 0.811 and 0.782 in the training and the validation sets, respectively. The addition of inflammatory plasma protein biomarkers to established nine LC risk models increased the AUCs up to 0.121 and 0.070 among ever smoking participants from training and validation sets, respectively. Our results suggest that inflammatory protein biomarkers may have potential to improve the selection of people for LC screening and thereby enhance screening efficiency.
DOI:doi:10.3390/cancers14092146
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/cancers14092146
 Volltext: https://www.mdpi.com/2072-6694/14/9/2146
 DOI: https://doi.org/10.3390/cancers14092146
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:cancer prevention and screening
 LC risk model
 lung cancer
 proteomics
 risk prediction
 risk stratification
 smoking exposure
K10plus-PPN:1807526860
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68933879   QR-Code
zum Seitenanfang