| Online-Ressource |
Verfasst von: | Kommoss, Katharina [VerfasserIn]  |
| Winkler, Julia K. [VerfasserIn]  |
| Müller-Christmann, Christine [VerfasserIn]  |
| Niedermair, Felicitas [VerfasserIn]  |
| Toberer, Ferdinand [VerfasserIn]  |
| Buhl, Timo [VerfasserIn]  |
| Enk, Alexander [VerfasserIn]  |
| Blum, Andreas [VerfasserIn]  |
| Stolz, Wilhelm [VerfasserIn]  |
| Rosenberger, Albert [VerfasserIn]  |
| Hänßle, Holger [VerfasserIn]  |
Titel: | Does sex matter? |
Titelzusatz: | Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection |
Verf.angabe: | Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Wilhelm Stolz, Albert Rosenberger, Holger A. Haenssle |
E-Jahr: | 2022 |
Jahr: | 16 February 2022 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 24.06.2022 |
Titel Quelle: | Enthalten in: European journal of cancer |
Ort Quelle: | Amsterdam [u.a.] : Elsevier, 1992 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 164(2022) vom: März, Seite 88-94 |
ISSN Quelle: | 1879-0852 |
Abstract: | Background - Advances in biomedical artificial intelligence may introduce or perpetuate sex and gender discriminations. Convolutional neural networks (CNN) have proven a dermatologist-level performance in image classification tasks but have not been assessed for sex and gender biases that may affect training data and diagnostic performance. In this study, we investigated sex-related imbalances in training data and diagnostic performance of a market-approved CNN for skin cancer classification (Moleanalyzer Pro®, Fotofinder Systems GmbH, Bad Birnbach, Germany). - Methods - We screened open-access dermoscopic image repositories widely used for CNN training for distribution of sex. Moreover, the sex-related diagnostic performance of the market-approved CNN was tested in 1549 dermoscopic images stratified by sex (female n = 773; male n = 776). - Results - Most open-access repositories showed a marked under-representation of images originating from female (40%) versus male (60%) patients. Despite these imbalances and well-known sex-related differences in skin anatomy or skin-directed behaviour, the tested CNN achieved a comparable sensitivity of 87.0% [80.9%-91.3%] versus 87.1% [81.1%-91.4%], specificity of 98.7% [97.4%-99.3%] versus 96.9% [95.2%-98.0%] and ROC-AUC of 0.984 [0.975-0.993] versus 0.979 [0.969-0.988] in dermoscopic images of female versus male origin, respectively. In the sample at hand, sex-related differences in ROC-AUCs were not statistically significant in the per-image analysis nor in an additional per-individual analysis (p ≥ 0.59). - Conclusion - Design and training of artificial intelligence algorithms for medical applications should generally acknowledge sex and gender dimensions. Despite sex-related imbalances in open-access training data, the diagnostic performance of the tested CNN showed no sex-related bias in the classification of skin lesions. |
DOI: | doi:10.1016/j.ejca.2021.12.034 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.ejca.2021.12.034 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S095980492200020X |
| DOI: https://doi.org/10.1016/j.ejca.2021.12.034 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Automated melanoma detection |
| Bias |
| Computer-assisted diagnostics |
| Convolutional neural network |
| Deep learning |
| Dermoscopy |
| Melanoma |
| Nevi |
| Pigmented skin lesions |
| Sex |
K10plus-PPN: | 1807742938 |
Verknüpfungen: | → Zeitschrift |
Does sex matter? / Kommoss, Katharina [VerfasserIn]; 16 February 2022 (Online-Ressource)