Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kommoss, Katharina [VerfasserIn]   i
 Winkler, Julia K. [VerfasserIn]   i
 Müller-Christmann, Christine [VerfasserIn]   i
 Niedermair, Felicitas [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Buhl, Timo [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Blum, Andreas [VerfasserIn]   i
 Stolz, Wilhelm [VerfasserIn]   i
 Rosenberger, Albert [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Does sex matter?
Titelzusatz:Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection
Verf.angabe:Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Wilhelm Stolz, Albert Rosenberger, Holger A. Haenssle
E-Jahr:2022
Jahr:16 February 2022
Umfang:7 S.
Fussnoten:Gesehen am 24.06.2022
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2022
Band/Heft Quelle:164(2022) vom: März, Seite 88-94
ISSN Quelle:1879-0852
Abstract:Background - Advances in biomedical artificial intelligence may introduce or perpetuate sex and gender discriminations. Convolutional neural networks (CNN) have proven a dermatologist-level performance in image classification tasks but have not been assessed for sex and gender biases that may affect training data and diagnostic performance. In this study, we investigated sex-related imbalances in training data and diagnostic performance of a market-approved CNN for skin cancer classification (Moleanalyzer Pro®, Fotofinder Systems GmbH, Bad Birnbach, Germany). - Methods - We screened open-access dermoscopic image repositories widely used for CNN training for distribution of sex. Moreover, the sex-related diagnostic performance of the market-approved CNN was tested in 1549 dermoscopic images stratified by sex (female n = 773; male n = 776). - Results - Most open-access repositories showed a marked under-representation of images originating from female (40%) versus male (60%) patients. Despite these imbalances and well-known sex-related differences in skin anatomy or skin-directed behaviour, the tested CNN achieved a comparable sensitivity of 87.0% [80.9%-91.3%] versus 87.1% [81.1%-91.4%], specificity of 98.7% [97.4%-99.3%] versus 96.9% [95.2%-98.0%] and ROC-AUC of 0.984 [0.975-0.993] versus 0.979 [0.969-0.988] in dermoscopic images of female versus male origin, respectively. In the sample at hand, sex-related differences in ROC-AUCs were not statistically significant in the per-image analysis nor in an additional per-individual analysis (p ≥ 0.59). - Conclusion - Design and training of artificial intelligence algorithms for medical applications should generally acknowledge sex and gender dimensions. Despite sex-related imbalances in open-access training data, the diagnostic performance of the tested CNN showed no sex-related bias in the classification of skin lesions.
DOI:doi:10.1016/j.ejca.2021.12.034
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2021.12.034
 Volltext: https://www.sciencedirect.com/science/article/pii/S095980492200020X
 DOI: https://doi.org/10.1016/j.ejca.2021.12.034
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Automated melanoma detection
 Bias
 Computer-assisted diagnostics
 Convolutional neural network
 Deep learning
 Dermoscopy
 Melanoma
 Nevi
 Pigmented skin lesions
 Sex
K10plus-PPN:1807742938
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68934373   QR-Code
zum Seitenanfang