Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Montagud, Arnau [VerfasserIn]   i
 Béal, Jonas [VerfasserIn]   i
 Tobalina, Luis [VerfasserIn]   i
 Traynard, Pauline [VerfasserIn]   i
 Subramanian, Vigneshwari [VerfasserIn]   i
 Szalai, Bence [VerfasserIn]   i
 Alföldi, Róbert [VerfasserIn]   i
 Puskás, László [VerfasserIn]   i
 Valencia, Alfonso [VerfasserIn]   i
 Barillot, Emmanuel [VerfasserIn]   i
 Sáez Rodríguez, Julio [VerfasserIn]   i
 Calzone, Laurence [VerfasserIn]   i
Titel:Patient-specific Boolean models of signalling networks guide personalised treatments
Verf.angabe:Arnau Montagud, Jonas Béal, Luis Tobalina, Pauline Traynard, Vigneshwari Subramanian, Bence Szalai, Róbert Alföldi, László Puskás, Alfonso Valencia, Emmanuel Barillot, Julio Saez-Rodriguez, Laurence Calzone
E-Jahr:2022
Jahr:Feb 15, 2022
Umfang:81 S.
Fussnoten:Gesehen am 27.06.2022
Titel Quelle:Enthalten in: eLife
Ort Quelle:Cambridge : eLife Sciences Publications, 2012
Jahr Quelle:2022
Band/Heft Quelle:11(2022), Artikel-ID e72626, Seite 1-81
ISSN Quelle:2050-084X
Abstract:Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
DOI:doi:10.7554/eLife.72626
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.7554/eLife.72626
 DOI: https://doi.org/10.7554/eLife.72626
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:drug combinations
 logical modelling
 personalised drug
 personalised medicine
 prostate cancer
 simulations
K10plus-PPN:1807860841
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68934807   QR-Code
zum Seitenanfang