Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mutke, Matthias Anthony [VerfasserIn]   i
 Madai, Vince Istvan [VerfasserIn]   i
 Hilbert, Adam [VerfasserIn]   i
 Zihni, Esra [VerfasserIn]   i
 Potreck, Arne [VerfasserIn]   i
 Weyland, Charlotte S. [VerfasserIn]   i
 Möhlenbruch, Markus Alfred [VerfasserIn]   i
 Heiland, Sabine [VerfasserIn]   i
 Ringleb, Peter A. [VerfasserIn]   i
 Nagel, Simon [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Frey, Dietmar [VerfasserIn]   i
Titel:Comparing poor and favorable outcome prediction with machine learning after mechanical thrombectomy in acute ischemic stroke
Verf.angabe:Matthias A. Mutke, Vince I. Madai, Adam Hilbert, Esra Zihni, Arne Potreck, Charlotte S. Weyland, Markus A. Möhlenbruch, Sabine Heiland, Peter A. Ringleb, Simon Nagel, Martin Bendszus and Dietmar Frey
E-Jahr:2022
Jahr:27 May 2022
Umfang:11 S.
Fussnoten:Gesehen am 06.07.2022
Titel Quelle:Enthalten in: Frontiers in neurology
Ort Quelle:Lausanne : Frontiers Research Foundation, 2008
Jahr Quelle:2022
Band/Heft Quelle:13(2022), Artikel-ID 737667, Seite 1-11
ISSN Quelle:1664-2295
Abstract:Background and PurposeOutcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified Rankin Scale, mRS 0-2) after 3 months but poor outcome representing severe disability and mortality (mRS 5 and 6) might be of equal importance for clinical decision-making.MethodsWe retrospectively analyzed patients with AIS and LVO undergoing MT from 2009 to 2018. Prognostic variables were grouped in baseline clinical (A), MRI-derived variables including mismatch [apparent diffusion coefficient (ADC) and time-to-maximum (Tmax) lesion volume] (B), and variables reflecting speed and extent of reperfusion (C) [modified treatment in cerebral ischemia (mTICI) score and time from onset to mTICI]. Three different scenarios were analyzed: (1) baseline clinical parameters only, (2) baseline clinical and MRI-derived parameters, and (3) all baseline clinical, imaging-derived, and reperfusion-associated parameters. For each scenario, we assessed prediction for favorable and poor outcome with seven different machine learning algorithms.ResultsIn 210 patients, prediction of favorable outcome was improved after including speed and extent of recanalization [highest area under the curve (AUC) 0.73] compared to using baseline clinical variables only (highest AUC 0.67). Prediction of poor outcome remained stable by using baseline clinical variables only (highest AUC 0.71) and did not improve further by additional variables. Prediction of favorable and poor outcomes was not improved by adding MR-mismatch variables. Most important baseline clinical variables for both outcomes were age, National Institutes of Health Stroke Scale, and premorbid mRS.ConclusionsOur results suggest that a prediction of poor outcome after AIS and MT could be made based on clinical baseline variables only. Speed and extent of MT did improve prediction for a favorable outcome but is not relevant for poor outcome. An MR mismatch with small ischemic core and larger penumbral tissue showed no predictive importance.
DOI:doi:10.3389/fneur.2022.737667
URL:kostenfrei: Volltext: https://www.frontiersin.org/articles/10.3389/fneur.2022.737667
 DOI: https://doi.org/10.3389/fneur.2022.737667
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1809305136
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68938292   QR-Code
zum Seitenanfang