Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Li, Hao [VerfasserIn]   i
 Zech, Johannes [VerfasserIn]   i
 Hong, Danfeng [VerfasserIn]   i
 Ghamisi, Pedram [VerfasserIn]   i
 Schultz, Michael [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection
Verf.angabe:Hao Li, Johannes Zech, Danfeng Hong, Pedram Ghamisi, Michael Schultz, Alexander Zipf
E-Jahr:2022
Jahr:15 May 2022
Umfang:11 S.
Fussnoten:Gesehen am 06.07.2022
Titel Quelle:Enthalten in: International journal of applied earth observation and geoinformation
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1999
Jahr Quelle:2022
Band/Heft Quelle:110(2022), Artikel-ID 102804, Seite 1-11
ISSN Quelle:1872-826X
Abstract:Humans rely on clean water for their health, well-being, and various socio-economic activities. During the past few years, the COVID-19 pandemic has been a constant reminder of about the importance of hygiene and sanitation for public health. The most common approach to securing clean water supplies for this purpose is via wastewater treatment. To date, an effective method of detecting wastewater treatment plants (WWTP) accurately and automatically via remote sensing is unavailable. In this paper, we provide a solution to this task by proposing a novel joint deep learning (JDL) method that consists of a fine-tuned object detection network and a multi-task residual attention network (RAN). By leveraging OpenStreetMap (OSM) and multimodal remote sensing (RS) data, our JDL method is able to simultaneously tackle two different tasks: land use land cover (LULC) and WWTP classification. Moreover, JDL exploits the complementary effects between these tasks for a performance gain. We train JDL using 4,187 WWTP features and 4,200 LULC samples and validate the performance of the proposed method over a selected area around Stuttgart with 723 WWTP features and 1,200 LULC samples to generate an LULC classification map and a WWTP detection map. Extensive experiments conducted with different comparative methods demonstrate the effectiveness and efficiency of our JDL method in automatic WWTP detection in comparison with single-modality/single-task or traditional survey methods. Moreover, lessons learned pave the way for future works to simultaneously and effectively address multiple large-scale mapping tasks (e.g., both mapping LULC and detecting WWTP) from multimodal RS data via deep learning.
DOI:doi:10.1016/j.jag.2022.102804
URL:kostenfrei: Volltext ; Verlag: https://doi.org/10.1016/j.jag.2022.102804
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S1569843222000061
 DOI: https://doi.org/10.1016/j.jag.2022.102804
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:GeoAI
 multi-task learning
 multimodal
 object detection
 OpenStreetMap
 SDG 6
 volunteered geographic information
 wastewater treatment
K10plus-PPN:1809330475
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68938393   QR-Code
zum Seitenanfang