Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Lang, Richard [VerfasserIn]  |
| Sanhueza-Matamala, Nicolás [VerfasserIn]  |
Titel: | Minimum degree conditions for tight Hamilton cycles |
Verf.angabe: | Richard Lang, Nicolás Sanhueza-Matamala |
E-Jahr: | 2022 |
Jahr: | 11 April 2022 |
Umfang: | 75 S. |
Fussnoten: | Gesehen am 13.07.2022 |
Titel Quelle: | Enthalten in: London Mathematical SocietyJournal of the London Mathematical Society |
Ort Quelle: | Oxford : Wiley, 1926 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 105(2022), 4, Seite 2249-2323 |
ISSN Quelle: | 1469-7750 |
Abstract: | We develop a new framework to study minimum????-degree conditions in????-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for all????and????at once, and thus sheds light on the underlying struc-tural problems. Building on this, we show that one canstudy minimum????-degree conditions of????-uniform tightHamiltoncyclesbyfocusingontheinnerstructureoftheneighbourhoods. This reduces the matter to an Erdös–Gallai-type question for(???? − ????)-uniform hypergraphs,which is of independent interest. Once this frameworkis established, we can easily derive two new bounds.Firstly, we extend a classic result of Rödl, Ruciński andSzemerédi for????=????−1by determining asymptoticallybest possible degree conditions for????=????−2and all????⩾3. This was proved independently by Polcyn, Reiher,Rödl and Schülke. Secondly, we provide a general upperbound of1 − 1∕(2(???? − ????))for the tight Hamilton cycle????-degree threshold in????-uniform hypergraphs, thus nar-rowing the gap to the lower bound of1−1∕√????−????dueto Han and Zhao |
DOI: | doi:10.1112/jlms.12561 |
URL: | kostenfrei: Volltext: https://doi.org/10.1112/jlms.12561 |
| kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561 |
| DOI: https://doi.org/10.1112/jlms.12561 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1810103193 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Minimum degree conditions for tight Hamilton cycles / Lang, Richard [VerfasserIn]; 11 April 2022 (Online-Ressource)
68941219