Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Lang, Richard [VerfasserIn]   i
 Sanhueza-Matamala, Nicolás [VerfasserIn]   i
Titel:Minimum degree conditions for tight Hamilton cycles
Verf.angabe:Richard Lang, Nicolás Sanhueza-Matamala
E-Jahr:2022
Jahr:11 April 2022
Umfang:75 S.
Fussnoten:Gesehen am 13.07.2022
Titel Quelle:Enthalten in: London Mathematical SocietyJournal of the London Mathematical Society
Ort Quelle:Oxford : Wiley, 1926
Jahr Quelle:2022
Band/Heft Quelle:105(2022), 4, Seite 2249-2323
ISSN Quelle:1469-7750
Abstract:We develop a new framework to study minimum????-degree conditions in????-uniform hypergraphs, whichguarantee the existence of a tight Hamilton cycle. Ourmain theoreticalresult dealswith thetypical absorption,path cover and connecting arguments for all????and????at once, and thus sheds light on the underlying struc-tural problems. Building on this, we show that one canstudy minimum????-degree conditions of????-uniform tightHamiltoncyclesbyfocusingontheinnerstructureoftheneighbourhoods. This reduces the matter to an Erdös–Gallai-type question for(???? − ????)-uniform hypergraphs,which is of independent interest. Once this frameworkis established, we can easily derive two new bounds.Firstly, we extend a classic result of Rödl, Ruciński andSzemerédi for????=????−1by determining asymptoticallybest possible degree conditions for????=????−2and all????⩾3. This was proved independently by Polcyn, Reiher,Rödl and Schülke. Secondly, we provide a general upperbound of1 − 1∕(2(???? − ????))for the tight Hamilton cycle????-degree threshold in????-uniform hypergraphs, thus nar-rowing the gap to the lower bound of1−1∕√????−????dueto Han and Zhao
DOI:doi:10.1112/jlms.12561
URL:kostenfrei: Volltext: https://doi.org/10.1112/jlms.12561
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12561
 DOI: https://doi.org/10.1112/jlms.12561
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1810103193
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68941219   QR-Code
zum Seitenanfang