Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ardizzone, Lynton [VerfasserIn]   i
 Kruse, Jakob [VerfasserIn]   i
 Wirkert, Sebastian [VerfasserIn]   i
 Rahner, Daniel [VerfasserIn]   i
 Pellegrini, Eric William [VerfasserIn]   i
 Klessen, Ralf S. [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
 Rother, Carsten [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
Titel:Analyzing inverse problems with invertible neural networks
Verf.angabe:Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, Ullrich Köthe
Jahr:2018
Umfang:20 S.
Fussnoten:Identifizierung der Ressource nach: 6 Feb 2019 ; Gesehen am 26.07.2022
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2018
Band/Heft Quelle:(2018), Artikel-ID 1808.04730, Seite 1-20
Abstract:In many tasks, in particular in natural science, the goal is to determine hidden system parameters from a set of measurements. Often, the forward process from parameter- to measurement-space is a well-defined function, whereas the inverse problem is ambiguous: one measurement may map to multiple different sets of parameters. In this setting, the posterior parameter distribution, conditioned on an input measurement, has to be determined. We argue that a particular class of neural networks is well suited for this task -- so-called Invertible Neural Networks (INNs). Although INNs are not new, they have, so far, received little attention in literature. While classical neural networks attempt to solve the ambiguous inverse problem directly, INNs are able to learn it jointly with the well-defined forward process, using additional latent output variables to capture the information otherwise lost. Given a specific measurement and sampled latent variables, the inverse pass of the INN provides a full distribution over parameter space. We verify experimentally, on artificial data and real-world problems from astrophysics and medicine, that INNs are a powerful analysis tool to find multi-modalities in parameter space, to uncover parameter correlations, and to identify unrecoverable parameters.
DOI:doi:10.48550/arXiv.1808.04730
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.48550/arXiv.1808.04730
 Volltext: http://arxiv.org/abs/1808.04730
 DOI: https://doi.org/10.48550/arXiv.1808.04730
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:68T01
 Computer Science - Machine Learning
 Statistics - Machine Learning
K10plus-PPN:1810855101
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68944124   QR-Code
zum Seitenanfang