Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zhang, Xiaohui [VerfasserIn]   i
 Tricomi, Enrica [VerfasserIn]   i
 Missiroli, Francesco [VerfasserIn]   i
 Lotti, Nicola [VerfasserIn]   i
 Bokranz, Casimir [VerfasserIn]   i
 Nicklas, Daniela [VerfasserIn]   i
 Masia, Lorenzo [VerfasserIn]   i
Titel:Enhancing gait assistance control robustness of a hip exosuit by means of machine learning
Verf.angabe:Xiaohui Zhang, Enrica Tricomi, Francesco Missiroli, Nicola Lotti, Casimir Bokranz, Daniela Nicklas, Lorenzo Masia
E-Jahr:2022
Jahr:16 June 2022
Umfang:8 S.
Fussnoten:Gesehen am 28.07.2022
Titel Quelle:Enthalten in: IEEE Robotics and automation letters
Ort Quelle:New York, N.Y. : Institute of Electrical and Electronics Engineers, 2016
Jahr Quelle:2022
Band/Heft Quelle:7(2022), 3 vom: Juli, Seite 7566-7573
ISSN Quelle:2377-3766
Abstract:Optimally synchronising the assistance provided by wearable devices with the human voluntary motion is still an open challenge in robotics. In order to provide accurate and robust assistance, this paper presents a novel approach that combines a layered implementation of a controller for an underactuated exosuit assisting hip flexion during human locomotion: the first layer is based on Adaptive Oscillators (AOs layer), while the second one uses Machine Learning (ML layer). The latter has been introduced to enhance the robustness of the AOs-based controller in abrupt changes of the gait frequency, with the final goal to achieve higher synchronisation and symbiosis between the user and assistive devices in presence of variable and unpredictable locomotion patterns. The effectiveness of the layered controller has been tested on six healthy subjects. Preliminary results suggested that the additional ML layer provided improvement to the overall performances during overground walking. In addition, we found a reduction of metabolic rates when receiving assistance from the device: 7.4% on average on treadmill evaluations and 10% overground including the extra ML layer, without alteration of the physiological human motion.
DOI:doi:10.1109/LRA.2022.3183791
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/LRA.2022.3183791
 DOI: https://doi.org/10.1109/LRA.2022.3183791
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:adaptive oscillators
 Exosuits
 gait phase estimation
 Hip
 Legged locomotion
 machine learning
 Machine learning
 Oscillators
 Real-time systems
 Synchronization
 Trajectory
 underactuated robots
K10plus-PPN:1811941273
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68947942   QR-Code
zum Seitenanfang