Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Högele, Wolfgang [VerfasserIn]   i
 Loeschel, R. [VerfasserIn]   i
 Dobler, B. [VerfasserIn]   i
 Hesser, Jürgen [VerfasserIn]   i
 Koelbl, O. [VerfasserIn]   i
 Zygmanski, P. [VerfasserIn]   i
Titel:Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge
Verf.angabe:W. Hoegele, R. Loeschel, B. Dobler, J. Hesser, O. Koelbl, P. Zygmanski
E-Jahr:2011
Jahr:10 January 2011
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 29.07.2022
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2011
Band/Heft Quelle:38(2011), 2 vom: Jan., Seite 668-681
ISSN Quelle:2473-4209
 1522-8541
Abstract:Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem with prior knowledge and is solved using a Bayesian maximuma posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy®) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.
DOI:doi:10.1118/1.3532959
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1118/1.3532959
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1118/1.3532959
 DOI: https://doi.org/10.1118/1.3532959
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Anatomy
 and statistics
 Bayes methods
 biomechanics
 Cancer
 Computed tomography
 computerised tomography
 Conformal radiation treatment
 deformation
 diagnostic radiography
 estimation
 feature extraction
 IGRT
 Image registration
 inverse problems
 Inverse problems
 maximum a posteriori
 maximum likelihood estimation
 Mechanical and electrical properties of tissues and organs
 medical image processing
 Medical image reconstruction
 Medical imaging
 patient positioning
 phantoms
 plasticity
 Plasticity
 Probability theory
 radiation therapy
 Radiography
 setup error
 Stochastic analysis
 stochastic processes
K10plus-PPN:1812009526
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68948356   QR-Code
zum Seitenanfang