Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bogacz, Bartosz [VerfasserIn]   i
 Mara, Hubert [VerfasserIn]   i
Titel:Digital assyriology
Titelzusatz:advances in visual cuneiform analysis
Verf.angabe:Bartosz Bogacz, Hubert Mara
E-Jahr:2022
Jahr:16 May 2022
Umfang:22 S.
Fussnoten:Gesehen am 04.08.2022
Titel Quelle:Enthalten in: Association for Computing MachineryACM journal on computing and cultural heritage
Ort Quelle:New York, NY : Association for Computing Machinery, 2008
Jahr Quelle:2022
Band/Heft Quelle:15(2022), 2, Seite 38:1-38:22
ISSN Quelle:1556-4711
 1556-4673
Abstract:Cuneiform tablets appertain to the oldest textual artifacts used for more than three millennia and are comparable in amount and relevance to texts written in Latin or ancient Greek. These tablets are typically found in the Middle East and were written by imprinting wedge-shaped impressions into wet clay. There is an increasing demand in the Digital Humanities domain for handwriting recognition, i.e., machine reading of handwritten script, focusing on historic documents. Current practice in text analysis of cuneiform script relies heavily on transliteration and translation, which are incomplete and influenced by the knowledge and experience of the expert that created them. The development of computational tools for cuneiform analysis presents many opportunities. An efficient and accurate sign spotting enables cross-referencing and statistical analyzes that are infeasible to perform manually. Furthermore, a wedge constellation spotting tool, provides experts with a significantly broader base of references to create more accurate and less time consuming transliterations and translations. Yet, cuneiform script has since resisted efforts to computational processing on basis of its basic constituents, its 3D wedge-shaped impressions and their free-form arrangements into signs. In this work, we review the literature on computational processing and recognition in the domain of cuneiform script. We introduce the different heterogeneous sources of cuneiform script, namely, manual ink-on-paper drawings, digital vector graphics drawings, photographs, and 3D scans of tablets. We describe the development of methods, beginning with the first computational classification using a hybrid manual encoding and computational comparison, to the latest methods making use of Generative Adversarial Neural Networks to recognize characters automatically. Finally, we give an overview of applications of these methods that enable quantitative mining in the small, e.g., patterns of wedge constellations, and in the large, e.g., networks of economic activity.
DOI:doi:10.1145/3491239
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1145/3491239
 DOI: https://doi.org/10.1145/3491239
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cuneiform
 similarity metrics
 word-spotting
K10plus-PPN:1813219842
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68950244   QR-Code
zum Seitenanfang