Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Di Piazza, Antonino [VerfasserIn]   i
 Fronimos, Fontis [VerfasserIn]   i
Titel:Quasiclassical representation of the Volkov propagator and the tadpole diagram in a plane wave
Verf.angabe:A. Di Piazza, F.P. Fronimos
E-Jahr:2022
Jahr:23 June 2022
Umfang:15 S.
Fussnoten:Gesehen am 04.08.2022
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Woodbury, NY : Inst., 2016
Jahr Quelle:2022
Band/Heft Quelle:105(2022), 11, Artikel-ID 116019, Seite 1-15
ISSN Quelle:2470-0029
Abstract:The solution of the Dirac equation in the presence of an arbitrary plane wave, corresponding to the so-called Volkov states, has provided an enormous insight in strong-field QED. In [Phys. Rev. A 103, 076011 (2021)], a new “fully quasiclassical” representation of the Volkov states has been found, which is equivalent to the one known in the literature but which more transparently shows the quasiclassical nature of the quantum dynamics of an electron in a plane-wave field. Here, we derive the corresponding expression of the propagator by constructing it using the fully quasiclassical form of the Volkov states. The found expression allows one, together with the fully quasiclassical expression of the Volkov states, to compute probabilities in strong-field QED in an intense plane wave by manipulating only 2-by-2 rather than 4-by-4 Dirac matrices as in the usual approach. Moreover, apart from the exponential functions featuring the classical action of an electron in a plane wave, the fully quasiclassical Volkov propagator depends only on the electron kinetic four-momentum in the plane wave, which is a gauge-invariant quantity. Finally, we also compute the one-loop tadpole diagram in a plane wave starting from the Volkov propagator and we find that after renormalization it identically vanishes.
DOI:doi:10.1103/PhysRevD.105.116019
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1103/PhysRevD.105.116019
 Volltext: https://link.aps.org/doi/10.1103/PhysRevD.105.116019
 DOI: https://doi.org/10.1103/PhysRevD.105.116019
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1813240582
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68950331   QR-Code
zum Seitenanfang