Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Eriksson, Olivia [VerfasserIn]   i
 Bhalla, Upinder Singh [VerfasserIn]   i
 Blackwell, Kim T. [VerfasserIn]   i
 Crook, Sharon M. [VerfasserIn]   i
 Keller, Daniel [VerfasserIn]   i
 Kramer, Andrei [VerfasserIn]   i
 Linne, Marja-Leena [VerfasserIn]   i
 Saudargienė, Ausra [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
 Hellgren Kotaleski, Jeanette [VerfasserIn]   i
Titel:Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows
Verf.angabe:Olivia Eriksson, Upinder Singh Bhalla, Kim T. Blackwell, Sharon M. Crook, Daniel Keller, Andrei Kramer, Marja-Leena Linne, Ausra Saudargienė, Rebecca C. Wade, Jeanette Hellgren Kotaleski
E-Jahr:2022
Jahr:06 July 2022
Umfang:31 S.
Fussnoten:Gesehen am 15.08.2022
Titel Quelle:Enthalten in: eLife
Ort Quelle:Cambridge : eLife Sciences Publications, 2012
Jahr Quelle:2022
Band/Heft Quelle:11(2022), Artikel-ID e69013, Seite 1-31
ISSN Quelle:2050-084X
Abstract:Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales.
DOI:doi:10.7554/eLife.69013
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.7554/eLife.69013
 DOI: https://doi.org/10.7554/eLife.69013
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:computational biology
 FAIR
 mathematical modeling
 modeling workflows
 neuroscience
 Neurosciences
 parameter estimation
 synaptic plasticity
 systems biology
 uncertainty quantification
 Workflow
K10plus-PPN:1814334475
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68953612   QR-Code
zum Seitenanfang