Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Becker, Jonas [VerfasserIn]   i
 Fakhiri, Julia [VerfasserIn]   i
 Grimm, Dirk [VerfasserIn]   i
Titel:Fantastic AAV gene therapy cectors and how to find them
Titelzusatz:random diversification, rational design and machine learning
Verf.angabe:Jonas Becker, Julia Fakhiri and Dirk Grimm
E-Jahr:2022
Jahr:3 July 2022
Umfang:30 S.
Fussnoten:Gesehen am 19.08.2022
Titel Quelle:Enthalten in: Pathogens
Ort Quelle:Basel : MDPI, 2012
Jahr Quelle:2022
Band/Heft Quelle:11(2022), 7, Artikel-ID 756, Seite 1-30
ISSN Quelle:2076-0817
Abstract:Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
DOI:doi:10.3390/pathogens11070756
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext ; Verlag: https://doi.org/10.3390/pathogens11070756
 kostenfrei: Volltext: https://www.mdpi.com/2076-0817/11/7/756
 DOI: https://doi.org/10.3390/pathogens11070756
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:AAV
 adeno-associated virus
 capsid engineering
 gene therapy
 molecular evolution
K10plus-PPN:1814730427
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68955663   QR-Code
zum Seitenanfang