Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pfeil, Mareike [VerfasserIn]   i
Titel:Cataclysms for Anosov representations
Verf.angabe:Mareike Pfeil
E-Jahr:2022
Jahr:17 August 2022
Umfang:31 S.
Fussnoten:Gesehen am 09.09.2022
Titel Quelle:Enthalten in: Geometriae dedicata
Ort Quelle:Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972
Jahr Quelle:2022
Band/Heft Quelle:216(2022), 6, Artikel-ID 61, Seite 1-31
ISSN Quelle:1572-9168
Abstract:In this paper, we construct cataclysm deformations for theta-Anosov representations into a semisimple non-compact connected real Lie group G with finite center, where theta subset of Lambda is a subset of the simple roots that is invariant under the opposition involution. These generalize Thurston's cataclysms on Teichmiiller space and Dreyer's cataclysms for Borel-Anosov representations into PSL(n, R). We express the deformation also in terms of the boundary map. Furthermore, we show that cataclysm deformations arc additive and behave well with respect to composing a representation with a group homomorphism. Finally, we show that the deformation is injective for Hitchin representations, but not in general for theta-Anosov representations.
DOI:doi:10.1007/s10711-022-00721-7
URL:kostenfrei: Volltext: https://doi.org/10.1007/s10711-022-00721-7
 kostenfrei: Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1007%2Fs10711-022-00721-7&De ...
 DOI: https://doi.org/10.1007/s10711-022-00721-7
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Anosov representations
 Cataclysms
 Discrete subgroups of Lie groups
 surface groups
K10plus-PPN:1816348767
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68962916   QR-Code
zum Seitenanfang