Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Longarino, Friderike K. [VerfasserIn]   i
 Kowalewski, Antonia [VerfasserIn]   i
 Tessonnier, Thomas [VerfasserIn]   i
 Mein, Stewart [VerfasserIn]   i
 Ackermann, Benjamin [VerfasserIn]   i
 Debus, Jürgen [VerfasserIn]   i
 Mairani, Andrea [VerfasserIn]   i
 Stiller, Wolfram [VerfasserIn]   i
Titel:Potential of a second-generation dual-layer spectral CT for dose calculation in particle therapy treatment planning
Verf.angabe:Friderike K. Longarino, Antonia Kowalewski, Thomas Tessonnier, Stewart Mein, Benjamin Ackermann, Jürgen Debus, Andrea Mairani and Wolfram Stiller
E-Jahr:2022
Jahr:20 April 2022
Umfang:11 S.
Fussnoten:Gesehen am 16.09.2022
Titel Quelle:Enthalten in: Frontiers in oncology
Ort Quelle:Lausanne : Frontiers Media, 2011
Jahr Quelle:2022
Band/Heft Quelle:12(2022) vom: Apr., Artikel-ID 853495, Seite 1-11
ISSN Quelle:2234-943X
Abstract:In particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction. This dual-energy CT (DECT)-based method allows for the direct prediction of SPR from quantitative measurements of relative electron density and effective atomic number using the Bethe equation, whereas the conventional SECT-based method consists of indirect image data-based prediction through the conversion of calibrated CT numbers to SPR. The performance of the Spectral CT 7500 in particle therapy treatment planning was characterized by conducting a thorough analysis of its SPR prediction accuracy for both tissue-equivalent materials and common non-tissue implant materials. In both instances, DLCT was found to reduce uncertainty in SPR predictions compared to SECT. Mean deviations of 0.7% and 1.6% from measured SPR values were found for DLCT- and SECT-based predictions, respectively, in tissue-equivalent materials. Furthermore, end-to-end analyses of DLCT-based treatment planning were performed for proton, helium, and carbon ion therapies with anthropomorphic head and pelvic phantoms. 3D gamma analysis was performed with ionization chamber array measurements as the reference. DLCT-predicted dose distributions revealed higher passing rates compared to SECT-predicted dose distributions. In the DLCT-based treatment plans, measured distal-edge evaluation layers were within 1 mm of their predicted positions, demonstrating the accuracy of DLCT-based particle range prediction. This study demonstrated that the use of the Spectral CT 7500 in particle therapy treatment planning may lead to better agreement between planned and delivered dose compared to current clinical SECT systems.
DOI:doi:10.3389/fonc.2022.853495
URL:kostenfrei: Volltext: https://doi.org/10.3389/fonc.2022.853495
 kostenfrei: Volltext: https://www.frontiersin.org/articles/10.3389/fonc.2022.853495
 DOI: https://doi.org/10.3389/fonc.2022.853495
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1816774278
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68964885   QR-Code
zum Seitenanfang