Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Neddermeyer, Jan Christoph [VerfasserIn]   i
Titel:Non-parametric partial importance sampling for financial derivative pricing
Verf.angabe:Jan C. Neddermeyer
Jahr:2011
Umfang:14 S.
Fussnoten:First published online: 11 May 2010 ; Gesehen am 15.09.2022
Titel Quelle:Enthalten in: Quantitative finance
Ort Quelle:London : Taylor & Francis, 2001
Jahr Quelle:2011
Band/Heft Quelle:11(2011), 8, Seite 1193-1206
ISSN Quelle:1469-7696
Abstract:Importance sampling is a promising variance reduction technique for Monte Carlo simulation-based derivative pricing. Existing importance sampling methods are based on a parametric choice of the proposal. This article proposes an algorithm that estimates the optimal proposal non-parametrically using a multivariate frequency polygon estimator. In contrast to parametric methods, non-parametric estimation allows for close approximation of the optimal proposal. Standard non-parametric importance sampling is inefficient for high-dimensional problems. We solve this issue by applying the procedure to a low-dimensional subspace, which is identified through principal component analysis and the concept of the effective dimension. The mean square error properties of the algorithm are investigated and its asymptotic optimality is shown. Quasi-Monte Carlo is used for further improvement of the method. It is easy to implement, particularly it does not require any analytical computation, and it is computationally very efficient. We demonstrate through path-dependent and multi-asset option pricing problems that the algorithm leads to significant efficiency gains compared with other algorithms in the literature.
DOI:doi:10.1080/14697680903496485
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1080/14697680903496485
 DOI: https://doi.org/10.1080/14697680903496485
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Financial engineering
 Monte Carlo methods
 Option pricing via simulation
 Path-dependent options
 Pricing of derivatives securities
K10plus-PPN:1817214799
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68966118   QR-Code
zum Seitenanfang