| Online-Ressource |
Verfasst von: | Alessandrini, Daniele [VerfasserIn]  |
| Berenstein, Arkady [VerfasserIn]  |
| Retakh, Vladimir [VerfasserIn]  |
| Rogozinnikov, Eugen [VerfasserIn]  |
| Wienhard, Anna [VerfasserIn]  |
Titel: | Symplectic groups over noncommutative algebras |
Verf.angabe: | Daniele Alessandrini, Arkady Berenstein, Vladimir Retakh, Eugen Rogozinnikov, Anna Wienhard |
E-Jahr: | 2022 |
Jahr: | 12 September 2022 |
Umfang: | 119 S. |
Fussnoten: | Gesehen am 23.09.2022 |
Titel Quelle: | Enthalten in: Selecta mathematica |
Ort Quelle: | Basel [u.a.] : Birkhäuser, 1995 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 28(2022), 4, Artikel-ID 82, Seite 1-119 |
ISSN Quelle: | 1420-9020 |
Abstract: | We introduce the symplectic group $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$over a noncommutative algebra A with an anti-involution $$\sigma $$. We realize several classical Lie groups as $${{\,\mathrm{Sp}\,}}_2$$over various noncommutative algebras, which provides new insights into their structure theory. We construct several geometric spaces, on which the groups $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$act. We introduce the space of isotropic A-lines, which generalizes the projective line. We describe the action of $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$on isotropic A-lines, generalize the Kashiwara-Maslov index of triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action. When the algebra A is Hermitian or the complexification of a Hermitian algebra, we introduce the symmetric space $$X_{{{\,\mathrm{Sp}\,}}_2(A,\sigma )}$$, and construct different models of this space. Applying this to classical Hermitian Lie groups of tube type (realized as $${{\,\mathrm{Sp}\,}}_2(A,\sigma )$$) and their complexifications, we obtain different models of the symmetric space as noncommutative generalizations of models of the hyperbolic plane and of the three-dimensional hyperbolic space. We also provide a partial classification of Hermitian algebras in Appendix A. |
DOI: | doi:10.1007/s00029-022-00787-x |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1007/s00029-022-00787-x |
| DOI: https://doi.org/10.1007/s00029-022-00787-x |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 16W10 |
| 32M15 |
| 46L05 |
| 53C35 |
| Hermitian algebra |
| Hermitian Lie group |
| Hermitian symmetric space |
| Involutive algebra |
| Jordan algebra |
K10plus-PPN: | 1817283103 |
Verknüpfungen: | → Zeitschrift |
Symplectic groups over noncommutative algebras / Alessandrini, Daniele [VerfasserIn]; 12 September 2022 (Online-Ressource)