Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Erdem, Erkut [VerfasserIn]   i
 Kuyu, Menekse [VerfasserIn]   i
 Yagcioglu, Semih [VerfasserIn]   i
 Frank, Anette [VerfasserIn]   i
 Pârcălăbescu, Letiția [VerfasserIn]   i
 Plank, Barbara [VerfasserIn]   i
 Babii, Andrii [VerfasserIn]   i
 Turuta, Oleksii [VerfasserIn]   i
 Erdem, Aykut [VerfasserIn]   i
 Calixto, Iacer [VerfasserIn]   i
 Lloret, Elena [VerfasserIn]   i
 Apostol, Elena-Simona [VerfasserIn]   i
 Truică, Ciprian-Octavian [VerfasserIn]   i
 Šandrih, Branislava [VerfasserIn]   i
 Martinčić-Ipšić, Sanda [VerfasserIn]   i
 Berend, Gábor [VerfasserIn]   i
 Gatt, Albert [VerfasserIn]   i
 Korvel, Grăzina [VerfasserIn]   i
Titel:Neural natural language generation
Titelzusatz:a survey on multilinguality, multimodality, controllability and learning
Verf.angabe:Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii, Oleksii Turuta, Aykut Erdem, Iacer Calixto, Elena Lloret, Elena-Simona Apostol, Ciprian-Octavian Truică, Branislava Šandrih, Sanda Martinčić-Ipšić, Gábor Berend, Albert Gatt, Grăzina Korvel
E-Jahr:2022
Jahr:Apr 6, 2022
Umfang:77 S.
Fussnoten:Gesehen am 05.10.2022
Titel Quelle:Enthalten in: Journal of artificial intelligence research
Ort Quelle:[S.l.] : AI Access Found., 1994
Jahr Quelle:2022
Band/Heft Quelle:73(2022), Seite 1131-1207
ISSN Quelle:1943-5037
Abstract:Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.
DOI:doi:10.1613/jair.1.12918
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1613/jair.1.12918
 Volltext: https://jair.org/index.php/jair/article/view/12918
 DOI: https://doi.org/10.1613/jair.1.12918
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:natural language
 neural networks
K10plus-PPN:1818045001
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68970410   QR-Code
zum Seitenanfang