Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kazarnikov, Alexey [VerfasserIn]   i
 Scheichl, Robert [VerfasserIn]   i
 Haario, Heikki [VerfasserIn]   i
 Marciniak-Czochra, Anna [VerfasserIn]   i
Titel:A Bayesian approach to modelling biological pattern formation with limited data
Verf.angabe:Alexey Kazarnikov, Robert Scheichl, Heikki Haario and Anna Marciniak-Czochra
Ausgabe:Version v2
E-Jahr:2022
Jahr:31 Mar 2022
Umfang:28 S.
Fussnoten:Version 1 vom 28 März 2022, Version 2 vom 31 März 2022 ; Gesehen am 14.10.2022
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2022
Band/Heft Quelle:(2022), Artikel-ID 2203.14742, Seite 1-28
Abstract:Pattern formation in biological tissues plays an important role in the development of living organisms. Since the classical work of Alan Turing, a pre-eminent way of modelling has been through reaction-diffusion mechanisms. More recently, alternative models have been proposed, that link dynamics of diffusing molecular signals with tissue mechanics. In order to distinguish among different models, they should be compared to experimental observations. However, in many experimental situations only the limiting, stationary regime of the pattern formation process is observable, without knowledge of the transient behaviour or the initial state. The unstable nature of the underlying dynamics in all alternative models seriously complicates model and parameter identification, since small changes in the initial condition lead to distinct stationary patterns. To overcome this problem the initial state of the model can be randomised. In the latter case, fixed values of the model parameters correspond to a family of patterns rather than a fixed stationary solution, and standard approaches to compare pattern data directly with model outputs, e.g., in the least squares sense, are not suitable. Instead, statistical characteristics of the patterns should be compared, which is difficult given the typically limited amount of available data in practical applications. To deal with this problem, we extend a recently developed statistical approach for parameter identification using pattern data, the so-called Correlation Integral Likelihood (CIL) method. We suggest modifications that allow increasing the accuracy of the identification process without resizing the data set. The proposed approach is tested using different classes of pattern formation models. For all considered equations, parallel GPU-based implementations of the numerical solvers with efficient time stepping schemes are provided.
DOI:doi:10.48550/arXiv.2203.14742
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.48550/arXiv.2203.14742
 Volltext: http://arxiv.org/abs/2203.14742
 DOI: https://doi.org/10.48550/arXiv.2203.14742
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Mathematics - Analysis of PDEs
 Quantitative Biology - Quantitative Methods
K10plus-PPN:1818945215
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68974231   QR-Code
zum Seitenanfang