Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Shavlokhova, Veronika [VerfasserIn]   i
 Vollmer, Michael [VerfasserIn]   i
 Gholam, Patrick [VerfasserIn]   i
 Saravi, Babak Ebrahimzadeh [VerfasserIn]   i
 Vollmer, Andreas [VerfasserIn]   i
 Hoffmann, Jürgen [VerfasserIn]   i
 Engel, Michael [VerfasserIn]   i
 Freudlsperger, Christian [VerfasserIn]   i
Titel:Deep learning on basal cell carcinoma in vivo reflectance confocal microscopy data
Verf.angabe:Veronika Shavlokhova, Michael Vollmer, Patrick Gholam, Babak Saravi, Andreas Vollmer, Jürgen Hoffmann, Michael Engel and Christian Freudlsperger
E-Jahr:2022
Jahr:8 September 2022
Umfang:13 S.
Fussnoten:Gesehen am 22.11.2022
Titel Quelle:Enthalten in: Journal of Personalized Medicine
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2022
Band/Heft Quelle:12(2022), 9, Artikel-ID 1471, Seite 1-13
ISSN Quelle:2075-4426
Abstract:Extended skin malignancies of the head and neck region are among the most common cancer types and are associated with numerous diagnostic and therapeutical problems. The radical resection of skin cancer in the facial area often leads to severe functional and aesthetic impairment, and precise margin assessments can avoid the extensive safety margins. On the other hand, the complete removal of the cancer is essential to minimize the risk of recurrence. Reliable intraoperative assessments of the wound margins could overcome this discrepancy between minimal invasiveness and safety distance in the head and neck region. With the help of reflectance confocal laser microscopy (RCM), cells can be visualized in high resolution intraoperatively. The combination with deep learning and automated algorithms allows an investigator independent and objective interpretation of specific confocal imaging data. Therefore, we aimed to apply a deep learning algorithm to detect malignant areas in images obtained via in vivo confocal microscopy. We investigated basal cell carcinoma (BCC), as one of the most common entities with well-described in vivo RCM diagnostic criteria, within a preliminary feasibility study.
DOI:doi:10.3390/jpm12091471
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/jpm12091471
 Volltext: https://www.mdpi.com/2075-4426/12/9/1471
 DOI: https://doi.org/10.3390/jpm12091471
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 BCC
 deep learning
 reflectance confocal laser microscopy
K10plus-PPN:1823154166
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68987679   QR-Code
zum Seitenanfang