Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Girao, Antonio [VerfasserIn]   i
 Granet, Bertille [VerfasserIn]   i
 Kühn, Daniela [VerfasserIn]   i
 Osthus, Deryk [VerfasserIn]   i
Titel:Path and cycle decompositions of dense graphs
Verf.angabe:António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus
E-Jahr:2021
Jahr:15 May 2021
Umfang:50 S.
Fussnoten:Gesehen am 28.11.2022
Titel Quelle:Enthalten in: London Mathematical SocietyJournal of the London Mathematical Society
Ort Quelle:Oxford : Wiley, 1926
Jahr Quelle:2021
Band/Heft Quelle:104(2021), 3, Seite 1085-1134
ISSN Quelle:1469-7750
Abstract:We make progress on three long standing conjectures from the 1960s about path and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices can be decomposed into at most ⌈n2⌉ paths, while a conjecture of Hajós states that any Eulerian graph on n vertices can be decomposed into at most ⌊n−12⌋ cycles. The Erdős-Gallai conjecture states that any graph on n vertices can be decomposed into O(n) cycles and edges. We show that if G is a sufficiently large graph on n vertices with linear minimum degree, then the following hold. (i)G can be decomposed into at most n2+o(n) paths. (ii)If G is Eulerian, then it can be decomposed into at most n2+o(n) cycles. (iii)G can be decomposed into at most 3n2+o(n) cycles and edges. If in addition G satisfies a weak expansion property, we asymptotically determine the required number of paths/cycles for each such G. (iv)G can be decomposed into maxodd(G)2,Δ(G)2+o(n) paths, where odd(G) is the number of odd-degree vertices of G. (v)If G is Eulerian, then it can be decomposed into Δ(G)2+o(n) cycles. All bounds in (i)-(v) are asymptotically best possible.
DOI:doi:10.1112/jlms.12455
URL:Volltext ; Verlag: https://doi.org/10.1112/jlms.12455
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12455
 DOI: https://doi.org/10.1112/jlms.12455
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:05C38
 05C70
 05D40 (primary)
K10plus-PPN:1823726186
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68989546   QR-Code
zum Seitenanfang