Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Girao, Antonio [VerfasserIn]  |
| Granet, Bertille [VerfasserIn]  |
| Kühn, Daniela [VerfasserIn]  |
| Osthus, Deryk [VerfasserIn]  |
Titel: | Path and cycle decompositions of dense graphs |
Verf.angabe: | António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus |
E-Jahr: | 2021 |
Jahr: | 15 May 2021 |
Umfang: | 50 S. |
Fussnoten: | Gesehen am 28.11.2022 |
Titel Quelle: | Enthalten in: London Mathematical SocietyJournal of the London Mathematical Society |
Ort Quelle: | Oxford : Wiley, 1926 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 104(2021), 3, Seite 1085-1134 |
ISSN Quelle: | 1469-7750 |
Abstract: | We make progress on three long standing conjectures from the 1960s about path and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices can be decomposed into at most ⌈n2⌉ paths, while a conjecture of Hajós states that any Eulerian graph on n vertices can be decomposed into at most ⌊n−12⌋ cycles. The Erdős-Gallai conjecture states that any graph on n vertices can be decomposed into O(n) cycles and edges. We show that if G is a sufficiently large graph on n vertices with linear minimum degree, then the following hold. (i)G can be decomposed into at most n2+o(n) paths. (ii)If G is Eulerian, then it can be decomposed into at most n2+o(n) cycles. (iii)G can be decomposed into at most 3n2+o(n) cycles and edges. If in addition G satisfies a weak expansion property, we asymptotically determine the required number of paths/cycles for each such G. (iv)G can be decomposed into maxodd(G)2,Δ(G)2+o(n) paths, where odd(G) is the number of odd-degree vertices of G. (v)If G is Eulerian, then it can be decomposed into Δ(G)2+o(n) cycles. All bounds in (i)-(v) are asymptotically best possible. |
DOI: | doi:10.1112/jlms.12455 |
URL: | Volltext ; Verlag: https://doi.org/10.1112/jlms.12455 |
| Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12455 |
| DOI: https://doi.org/10.1112/jlms.12455 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 05C38 |
| 05C70 |
| 05D40 (primary) |
K10plus-PPN: | 1823726186 |
Verknüpfungen: | → Zeitschrift |
|
|
| |
Lokale URL UB: | Zum Volltext |
Path and cycle decompositions of dense graphs / Girao, Antonio [VerfasserIn]; 15 May 2021 (Online-Ressource)
68989546