Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pfob, André [VerfasserIn]   i
 Mehrara, Babak J. [VerfasserIn]   i
 Nelson, Jonas A. [VerfasserIn]   i
 Wilkins, Edwin G. [VerfasserIn]   i
 Pusic, Andrea L. [VerfasserIn]   i
 Sidey-Gibbons, Chris [VerfasserIn]   i
Titel:Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)
Verf.angabe:André Pfob, Babak J. Mehrara, Jonas A. Nelson, Edwin G. Wilkins, Andrea L. Pusic, Chris Sidey-Gibbons
E-Jahr:2021
Jahr:29 September 2021
Umfang:12 S.
Fussnoten:Gesehen am 29.11.2022
Titel Quelle:Enthalten in: The breast
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2021
Band/Heft Quelle:60(2021), Seite 111-122
ISSN Quelle:1532-3080
Abstract:Background: Women undergoing cancer-related mastectomy and reconstruction are facing multiple treatment choices where post-surgical satisfaction with breasts is a key outcome. We developed and validated machine learning algorithms to predict patient-reported satisfaction with breasts at 2-year follow-up to better inform the decision-making process for women with breast cancer. - Methods: We trained, tested, and validated three machine learning algorithms (logistic regression (LR) with elastic net penalty, Extreme Gradient Boosting (XGBoost) tree, and neural network) to predict clinically important differences in satisfaction with breasts at 2-year follow-up using the validated BREAST-Q. We used data from 1553 women undergoing cancer-related mastectomy and reconstruction who were followed-up for two years at eleven study sites in North America from 2011 to 2016. 10-fold cross-validation was used to train and test the algorithms on data from 10 of the 11 sites which were further validated using the additional site's data. Area-under-the-receiver-operating-characteristics-curve (AUC) was the primary outcome measure. - Results: Of 1553 women, 702 (45.2%) experienced an improved satisfaction with breasts and 422 (27.2%) a decreased satisfaction. In the validation set (n = 221), the algorithms showed equally high performance to predict improved or decreased satisfaction with breasts (all P > 0.05): For improved satisfaction AUCs were 0.86-0.87 and for decreased satisfaction AUCs were 0.84-0.85. - Conclusion: Long-term, individual patient-reported outcomes for women undergoing mastectomy and breast reconstruction can be accurately predicted using machine learning algorithms. Our algorithms may be used to better inform clinical treatment decisions for these patients by providing accurate estimates of expected quality of life.
DOI:doi:10.1016/j.breast.2021.09.009
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.breast.2021.09.009
 Volltext: https://www.sciencedirect.com/science/article/pii/S0960977621004665
 DOI: https://doi.org/10.1016/j.breast.2021.09.009
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Breast reconstruction
 Breast surgery
 Decision-making
 Individualized treatment
 INSPiRED
 Machine learning
K10plus-PPN:1823875742
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68990694   QR-Code
zum Seitenanfang