Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Cygan, Szymon [VerfasserIn]  |
| Marciniak-Czochra, Anna [VerfasserIn]  |
| Karch, Grzegorz [VerfasserIn]  |
| Suzuki, Kanako [VerfasserIn]  |
Titel: | Instability of all regular stationary solutions to reaction-diffusion-ODE systems |
Verf.angabe: | Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki |
E-Jahr: | 2022 |
Jahr: | 28 August 2022 |
Umfang: | 23 S. |
Fussnoten: | Gesehen am 07.12.2022 |
Titel Quelle: | Enthalten in: Journal of differential equations |
Ort Quelle: | Orlando, Fla. : Elsevier, 1965 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 337(2022), Seite 460-482 |
ISSN Quelle: | 1090-2732 |
Abstract: | A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of close-to-equilibrium patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be far-from-equilibrium exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work (Cygan et al., 2021 [4]). |
DOI: | doi:10.1016/j.jde.2022.08.007 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.jde.2022.08.007 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S002203962200479X |
| DOI: https://doi.org/10.1016/j.jde.2022.08.007 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | patterns |
| Reaction-diffusion equations |
| Stability |
| Stationary solutions |
K10plus-PPN: | 1826446818 |
Verknüpfungen: | → Zeitschrift |
Instability of all regular stationary solutions to reaction-diffusion-ODE systems / Cygan, Szymon [VerfasserIn]; 28 August 2022 (Online-Ressource)
68994028