Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Esmorís Pena, Alberto M. [VerfasserIn]   i
 Yermo, Miguel [VerfasserIn]   i
 Weiser, Hannah [VerfasserIn]   i
 Winiwarter, Lukas [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
 Rivera, Francisco F. [VerfasserIn]   i
Titel:Virtual LiDAR simulation as a high performance computing challenge
Titelzusatz:toward HPC HELIOS++
Verf.angabe:Alberto M. Esmorís, Miguel Yermo, Hannah Weiser, Lukas Winiwarter, Bernhard Höfle, and Francisco F. Rivera
E-Jahr:2022
Jahr:30 September 2022
Umfang:22 S.
Fussnoten:Online veröffentlicht am 30 September 2022, Artikelversion 10 Oktober 2022 ; Gesehen am 09.12.2022
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE access
Ort Quelle:New York, NY : IEEE, 2013
Jahr Quelle:2022
Band/Heft Quelle:10(2022), Seite 105052-105073
ISSN Quelle:2169-3536
Abstract:The software HELIOS++ simulates the laser scanning of a given virtual scene that can be composed of different spatial primitives and 3D meshes with distinct granularity. The high computational cost of this type of simulation software demands efficient computational solutions. Classical solutions based on GPU are not well suited when irregular geometries compose the scene combining different primitives and physics models because they lead to different computation branches. In this paper, we explore the usage of parallelization strategies based on static and dynamic workload balancing and heuristic optimization strategies to speed up the ray tracing process based on a k-dimensional tree (KDT). Using HELIOS++ as our case study, we analyze the performance of our algorithms on different parallel computers, including the CESGA FinisTerrae-II supercomputer. There is a significant performance boost in all cases, with the decrease in computation time ranging from 89.5% to 99.4%. Our results show that the proposed algorithms can boost the performance of any software that relies heavily on a KDT or a similar data structure, as well as those that spend most of the time computing with only a few synchronization barriers. Hence, the algorithms presented in this paper improve performance, whether computed on personal computers or supercomputers.
DOI:doi:10.1109/ACCESS.2022.3211072
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://dx.doi.org/10.1109/ACCESS.2022.3211072
 DOI: https://doi.org/10.1109/ACCESS.2022.3211072
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Buildings
 Computational efficiency
 Computational modeling
 Costs
 Geometry
 HELIOS++
 HPC
 KDTree
 LiDAR simulation
 Octrees
 parallel computing
 Parallel processing
 ray tracing
 Ray tracing
K10plus-PPN:1826716858
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68995131   QR-Code
zum Seitenanfang