Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Haun, Markus W. [VerfasserIn]   i
 Simon, Laura [VerfasserIn]   i
 Sklenarova, Halina [VerfasserIn]   i
 Zimmermann-Schlegel, Verena [VerfasserIn]   i
 Friederich, Hans-Christoph [VerfasserIn]   i
 Hartmann, Mechthild [VerfasserIn]   i
Titel:Predicting anxiety in cancer survivors presenting to primary care
Titelzusatz:a machine learning approach accounting for physical comorbidity
Verf.angabe:Markus W. Haun, Laura Simon, Halina Sklenarova, Verena Zimmermann-Schlegel, Hans-Christoph Friederich, Mechthild Hartmann
Jahr:2021
Umfang:16 S.
Fussnoten:Gesehen am 12.12.2022
Titel Quelle:Enthalten in: Cancer medicine
Ort Quelle:Hoboken, NJ : Wiley, 2012
Jahr Quelle:2021
Band/Heft Quelle:10(2021), 14, Seite 5001-5016
ISSN Quelle:2045-7634
Abstract:Background The purpose of this study was to explore predictors for anxiety as the most common form of psychological distress in cancer survivors while accounting for physical comorbidity. Methods We conducted a secondary data analysis of a large study within the German National Cancer Plan which enrolled primary care cancer survivors diagnosed with colon, prostatic, or breast cancer. We selected candidate predictors based on a systematic MEDLINE search. Using supervised machine learning, we developed a prediction model for anxiety by splitting the data into a 70% training set and a 30% test set and further split the training set into 10-folds for cross-validating the hyperparameter tuning step during model selection. We fit six different regression models, selected the model that maximized the root mean square error (RMSE) and fit the selected model to the entire training set. Finally, we evaluated the model performance on the holdout test set. Results In total, data from 496 cancer survivors were analyzed. The LASSO model (α = 1.0) with weakly penalized model complexity (λ = 0.015) slightly outperformed all other models (RMSE = 0.370). Physical symptoms, namely, fatigue/weakness (β = 0.18), insomnia (β = 0.12), and pain (β = 0.04), were the most important predictors, while the degree of physical comorbidity was negligible. Conclusions Prediction of clinically significant anxiety in cancer survivors using readily available predictors is feasible. The findings highlight the need for considering cancer survivors’ physical functioning regardless of the degree of comorbidity when assessing their psychological well-being. The generalizability of the model to other populations should be investigated in future external validations.
DOI:doi:10.1002/cam4.4048
URL:kostenfrei: Volltext: https://doi.org/10.1002/cam4.4048
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.4048
 DOI: https://doi.org/10.1002/cam4.4048
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:anxiety
 cancer survivors
 comorbidity
 health services research
 machine learning
 prediction
 primary care
K10plus-PPN:1826816186
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68995940   QR-Code
zum Seitenanfang