Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Konietzke, Marilisa [VerfasserIn]   i
 Triphan, Simon M. F. [VerfasserIn]   i
 Eichinger, Monika [VerfasserIn]   i
 Bossert, Sebastian [VerfasserIn]   i
 Heller, Hartmut [VerfasserIn]   i
 Wege, Sabine [VerfasserIn]   i
 Eberhardt, Ralf [VerfasserIn]   i
 Puderbach, Michael [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Heußel, Gudula [VerfasserIn]   i
 Heußel, Claus Peter [VerfasserIn]   i
 Risse, Frank [VerfasserIn]   i
 Wielpütz, Mark Oliver [VerfasserIn]   i
Titel:Unsupervised clustering algorithms improve the reproducibility of dynamic contrast-enhanced magnetic resonance imaging pulmonary perfusion quantification in muco-obstructive lung diseases
Verf.angabe:Marilisa Konietzke, Simon M. F. Triphan, Monika Eichinger, Sebastian Bossert, Hartmut Heller, Sabine Wege, Ralf Eberhardt, Michael U. Puderbach, Hans-Ulrich Kauczor, Gudula Heußel, Claus P. Heußel, Frank Risse and Mark O. Wielpütz
E-Jahr:2022
Jahr:24 October 2022
Umfang:12 S.
Fussnoten:Gesehen am 19.12.2022
Titel Quelle:Enthalten in: Frontiers in medicine
Ort Quelle:Lausanne : Frontiers Media, 2014
Jahr Quelle:2022
Band/Heft Quelle:9(2022), Artikel-ID 1022981, Seite 1-12
ISSN Quelle:2296-858X
Abstract:BackgroundDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability.PurposeWe investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).Methods15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader.ResultsOverall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =−0.29, p = 0.132 and r =−0.35, p = 0.067, respectively) and moderately in COPD (r =−0.57 and r =−0.57, p < 0.001, respectively).ConclusionIn patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.
DOI:doi:10.3389/fmed.2022.1022981
URL:kostenfrei: Volltext: https://doi.org/10.3389/fmed.2022.1022981
 kostenfrei: Volltext: https://www.frontiersin.org/articles/10.3389/fmed.2022.1022981
 DOI: https://doi.org/10.3389/fmed.2022.1022981
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1827918705
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68999391   QR-Code
zum Seitenanfang