Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Reh, Moritz [VerfasserIn]   i
 Gärttner, Martin [VerfasserIn]   i
Titel:Variational Monte Carlo approach to partial differential equations with neural networks
Verf.angabe:Moritz Reh and Martin Gärttner
E-Jahr:2022
Jahr:1 December 2022
Umfang:7 S.
Illustrationen:Diagramme
Fussnoten:Gesehen am 08.11.2023
Titel Quelle:Enthalten in: Machine learning: science and technology
Ort Quelle:Bristol : IOP Publishing, 2020
Jahr Quelle:2022
Band/Heft Quelle:3(2022), 4, Artikel-ID 04LT02, Seite 1-7
ISSN Quelle:2632-2153
Abstract:The accurate numerical solution of partial differential equations (PDEs) is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving PDEs governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. In contrast to previous works, this dynamical adaptation of the parameters is carried out using an explicit prescription avoiding iterative gradient descent. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions for tasks that are challenging for traditional computational approaches.
DOI:doi:10.1088/2632-2153/aca317
URL:kostenfrei: Volltext: https://doi.org/10.1088/2632-2153/aca317
 kostenfrei: Volltext: https://iopscience.iop.org/article/10.1088/2632-2153/aca317
 DOI: https://doi.org/10.1088/2632-2153/aca317
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1831329972
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69007635   QR-Code
zum Seitenanfang