Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Stammer, Pia [VerfasserIn]   i
 Burigo, Lucas Norberto [VerfasserIn]   i
 Jäkel, Oliver [VerfasserIn]   i
 Frank, Martin [VerfasserIn]   i
 Wahl, Niklas [VerfasserIn]   i
Titel:Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport
Verf.angabe:Pia Stammer, Lucas Burigo, Oliver Jäkel, Martin Frank, Niklas Wahl
E-Jahr:2023
Jahr:26 October 2022
Umfang:22 S.
Fussnoten:Gesehen am 18.01.2023
Titel Quelle:Enthalten in: Journal of computational physics
Ort Quelle:Amsterdam : Elsevier, 1961
Jahr Quelle:2023
Band/Heft Quelle:473(2023), Artikel-ID 111725, Seite 1-22
ISSN Quelle:1090-2716
Abstract:Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common non-intrusive solution strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Intrusive methods however limit the usability in combination with proprietary simulation engines. In [61], we demonstrated the application of a new non-intrusive uncertainty quantification approach for Monte Carlo simulations in proton dose calculations with normally distributed errors on realistic patient data. In this paper, we introduce a generalized formulation and focus on a more in-depth theoretical analysis of this method concerning bias, error and convergence of the estimates. The multivariate input model of the proposed approach further supports almost arbitrary error correlation models. We demonstrate how this framework can be used to model and efficiently quantify complex auto-correlated and time-dependent errors.
DOI:doi:10.1016/j.jcp.2022.111725
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.jcp.2022.111725
 Volltext: https://www.sciencedirect.com/science/article/pii/S0021999122007884
 DOI: https://doi.org/10.1016/j.jcp.2022.111725
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Boltzmann equation
 Error modeling
 Importance sampling
 Monte Carlo
 Radiative transport
 Uncertainty quantification
K10plus-PPN:183142150X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69007746   QR-Code
zum Seitenanfang