Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Wolf, Daniel [VerfasserIn]  |
| Regnery, Sebastian [VerfasserIn]  |
| Tarnawski, Rafal [VerfasserIn]  |
| Bobek-Billewicz, Barbara [VerfasserIn]  |
| Polańska, Joanna [VerfasserIn]  |
| Götz, Michael [VerfasserIn]  |
Titel: | Weakly supervised learning with positive and unlabeled data for automatic brain tumor segmentation |
Verf.angabe: | Daniel Wolf, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska and Michael Götz |
E-Jahr: | 2022 |
Jahr: | 24 October 2022 |
Umfang: | 14 S. |
Fussnoten: | Gesehen am 20.01.2023 |
Titel Quelle: | Enthalten in: Applied Sciences |
Ort Quelle: | Basel : MDPI, 2011 |
Jahr Quelle: | 2022 |
Band/Heft Quelle: | 12(2022), 21, Artikel-ID 10763, Seite 1-14 |
ISSN Quelle: | 2076-3417 |
Abstract: | A major obstacle to the learning-based segmentation of healthy and tumorous brain tissue is the requirement of having to create a fully labeled training dataset. Obtaining these data requires tedious and error-prone manual labeling with respect to both tumor and non-tumor areas. To mitigate this problem, we propose a new method to obtain high-quality classifiers from a dataset with only small parts of labeled tumor areas. This is achieved by using positive and unlabeled learning in conjunction with a domain adaptation technique. The proposed approach leverages the tumor volume, and we show that it can be either derived with simple measures or completely automatic with a proposed estimation method. While learning from sparse samples allows reducing the necessary annotation time from 4 h to 5 min, we show that the proposed approach further reduces the necessary annotation by roughly 50% while maintaining comparative accuracies compared to traditionally trained classifiers with this approach. |
DOI: | doi:10.3390/app122110763 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.3390/app122110763 |
| Volltext: https://www.mdpi.com/2076-3417/12/21/10763 |
| DOI: https://doi.org/10.3390/app122110763 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | image segmentation |
| machine learning |
| MRI |
| PU-learning |
| random forests |
| semi-supervised learning |
| sparse annotation |
| tumor segmentation |
| weak annotations |
| weak supervision |
K10plus-PPN: | 1831591367 |
Verknüpfungen: | → Zeitschrift |
Weakly supervised learning with positive and unlabeled data for automatic brain tumor segmentation / Wolf, Daniel [VerfasserIn]; 24 October 2022 (Online-Ressource)
69008500