Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bill, Johannes [VerfasserIn]   i
 Schuch, Klaus [VerfasserIn]   i
 Brüderle, Daniel [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Maass, Wolfgang [VerfasserIn]   i
 Meier, Karlheinz [VerfasserIn]   i
Titel:Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity
Verf.angabe:Johannes Bill, Klaus Schuch, Daniel Brüderle, Johannes Schemmel, Wolfgang Maass and Karlheinz Meier
E-Jahr:2010
Jahr:2010 Oct 8
Umfang:14 S.
Fussnoten:Gesehen am 02.02.2023
Titel Quelle:Enthalten in: Frontiers in computational neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2010
Band/Heft Quelle:4(2010), Artikel-ID 129, Seite 1-14
ISSN Quelle:1662-5188
Abstract:Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistor-level variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices.
DOI:doi:10.3389/fncom.2010.00129
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3389/fncom.2010.00129
 Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965017/
 DOI: https://doi.org/10.3389/fncom.2010.00129
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1833083288
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69036426   QR-Code
zum Seitenanfang