Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Thome, Janine [VerfasserIn]   i
 Pinger, Mathieu [VerfasserIn]   i
 Durstewitz, Daniel [VerfasserIn]   i
 Sommer, Wolfgang H. [VerfasserIn]   i
 Kirsch, Peter [VerfasserIn]   i
 Koppe, Georgia [VerfasserIn]   i
Titel:Model-based experimental manipulation of probabilistic behavior in interpretable behavioral latent variable models
Verf.angabe:Janine Thome, Mathieu Pinger, Daniel Durstewitz, Wolfgang H. Sommer, Peter Kirsch and Georgia Koppe
E-Jahr:2023
Jahr:09 January 2023
Umfang:14 S.
Fussnoten:Gesehen am 28.02.2023
Titel Quelle:Enthalten in: Frontiers in neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2023
Band/Heft Quelle:16(2023), Artikel-ID 1077735, Seite 1-14
ISSN Quelle:1662-453X
Abstract:IntroductionInterpretable latent variable models that probabilistically link behavioral observations to an underlying latent process have increasingly been used to draw inferences on cognition from observed behavior. The latent process usually connects experimental variables to cognitive computation. While such models provide important insights into the latent processes generating behavior, one important aspect has often been overlooked. They may also be used to generate precise and falsifiable behavioral predictions as a function of the modeled experimental variables. In doing so, they pinpoint how experimental conditions must be designed to elicit desired behavior and generate adaptive experiments.MethodsThese ideas are exemplified on the process of delay discounting (DD). After inferring DD models from behavior on a typical DD task, the models are leveraged to generate a second adaptive DD task. Experimental trials in this task are designed to elicit 9 graded behavioral discounting probabilities across participants. Models are then validated and contrasted to competing models in the field by assessing the ouf-of-sample prediction error.ResultsThe proposed framework induces discounting probabilities on nine levels. In contrast to several alternative models, the applied model exhibits high validity as indicated by a comparably low prediction error. We also report evidence for inter-individual differences with respect to the most suitable models underlying behavior. Finally, we outline how to adapt the proposed method to the investigation of other cognitive processes including reinforcement learning.DiscussionInducing graded behavioral frequencies with the proposed framework may help to highly resolve the underlying cognitive construct and associated neuronal substrates.
DOI:doi:10.3389/fnins.2022.1077735
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://www.frontiersin.org/articles/10.3389/fnins.2022.1077735
 DOI: https://doi.org/10.3389/fnins.2022.1077735
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1837769338
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69045924   QR-Code
zum Seitenanfang